NEW STRATEGY FOR THE SYNTHESIS OF D-GLUCOPYRANOSIDURONIC ACID GLYCOSYL DONORS CONTAINING A LATENT C-4 ACCEPTOR

YUGUO DU, IONTCHO R. VLAHOV and ROBERT J. LINHARDT *

Division of Medicinal and Natural Products Chemistry and Department of Chemical and Biochemical Engineering, The University of Iowa, PHAR-S328, Iowa City, IA 52242, USA

(Received 4 July 1997; accepted 17 July 1997)

Abstract. An effective synthesis of glucuronic acid glycosyl-donor and/or -acceptor was performed starting from D-glucofuranuro-6,3-lactone 1. After lactonization of benzyl glycoside 3 and regioselective protection of the 4-hydroxyl of 4 with a bulky tert-butylidiphenylsilyl group, the lactone was opened with sodium methoxide in methanol followed by benzoylation affording the fully protected methyl ester 9, in which the C-4 was differentially protected as a latent acceptor. Simple desilylation at C-4 quantitatively gave acceptor 13, while catalytic hydrogenation, followed by activation of the anomeric center, gave donor 14 and 15.

Key Words: Glucopyranosiduronic acids, Glycosyl donors

INTRODUCTION

The sulfated glycosaminoglycan (GAG) chains of proteoglycans are essential for many of their biological functions.¹ For example, oligosaccharide domains of heparin,² dermatan³ and heparan sulfate⁴ have been reported to specifically interact with antithrombin III, heparin cofactor II, and fibroblast growth factors, respectively.

In conjunction with our studies on the structure-activity relationship of GAG-protein interactions,⁵ we are now synthesizing GAG-oligosaccharides. We have

*To whom correspondence should be addressed; Fax +1-319-335-6634, email: robert-linhardt@uiowa.edu
reported the regioselective synthesis of derivatives of L-idopyranosiduronic acid. We report a new strategy for the regioselectively synthesis of D-glucopyranosiduronic acid (GlcA) derivatives suitable as glycosyl donor and/or acceptor.

Previous work on the synthesis of GlcA-series donor and acceptor focused on the oxidation of the 6-hydroxyl group of glucose derivatives. The recent use of TEMPO for the selective oxidation of a primary alcohol in the presence of a secondary one has significantly improved this approach. Here, we wish to report a new method, not requiring oxidation, which was effective for the large scale synthesis of universal glucuronic acid donor and/or acceptor.

RESULTS AND DISCUSSION

The methyl (benzyl 2,3,4-tri-O-acetyl-β-D-glucopyranosid)uronate 2 was obtained from 1 following the procedure of Tanaka et al. Saponification of 2 was accomplished by adding 1N NaOH in aqueous MeOH at 4 °C, then stirred at room temperature for 1-2 h. The solution was neutralized with Amberlite IR-120 (H⁺) resin furnishing the glucuronoside 3 as a syrup. After drying under high vacuum for 24 hr, lactonization of 3 was accomplished by heating with acetic anhydride at 80°C for 2 h, at which time TLC showed the reaction complete. The mixture was concentrated under rotary evaporation from toluene and heptane to afford benzyl β-D-glucopyranosidurono-6,3-lactone 4 in good yield. To facilitate structural characterization, 4 was acetylated to give 5 in which 1C₄ conformation was confirmed by 1H-NMR data. The low 3J values (J₁₂ < 1, J₂₃ 3.6, J₃₄ 5.1, J₄₅ 3.8 Hz) indicated all the substituents in 5 to be axial. Selective silylation of the 4-hydroxyl group with tert-butylidiphenylsilyl chloride in the presence of imidazole and 4-dimethylaminopyridine generated the mixture containing the 6,3-lactones 6 and 7 in the ratio of 1:8. The lactone ring in the mixture of 6 and 7 (which are difficult to separate at this step) was opened selectively by NaOMe in MeOH (methanolsysis) at room temperature. Acylation with benzoyl chloride in the presence of triethylamine (TEA) gave the key intermediate 9 (63% in overall yield from 3) together with 8 (7.9% in overall yield from 3) and a third compound of undefined structure which were separated easily by flush column chromatography. Single frequency 1H NMR decoupling experiments clearly indicated that 9 had a C-4 TBDPS group (δ H-2 = 5.18, H-4 = 4.49 ppm) while 8 had a C-2 TBDPS group (δ H-2 = 3.98, H-4 =
Scheme

(a) MeOH, NaOMe, rt, 3 h; then Py, Ac₂O; (b) HBr, HOAc, rt (5 h), then kept at 4 °C for 24 h; (c) CH₂Cl₂, PhCH₂OH (5 eq.), Ag₂CO₃ (1.5 eq.), 4 Å molecular sieves, (59.4% from 1); (d) 1 N NaOH, MeOH, rt, 1 h; then Amberlite IR-120 (H⁺) ion-exchange resin (92%); (e) Ac₂O, 80 °C, 2 h; (f) Py, Ac₂O, rt, 16 h; (g) TBDPSCl, DMAP, Im., DMF, rt, 16 h; (h) NaOMe (catalytic amount), MeOH; rt, 3 h; (i) CH₂Cl₂, BzCl, Et₃N, rt, overnight, (8:9=1:8, 3 to 9 in 63% overall yield); (j) 3HF-Et,N, THF, rt, 16 h (92%); (k) (ClAc)₂O, CH₂Cl₂, Et₃N, rt, 6 h (89%); (l) H₂, 5% Pd-C, MeOH/EtOAc (1:1), (α predominant), rt (quant.); (m) K₂CO₃, CH₂Cl₂, CCl₃CN, rt, 16 h (89% from 11, β predominant), (93% from 12, α predominant)
5.37 ppm). Desilylation of 9 under standard conditions with basic tetrabutylammonium fluoride (TBAF)13 in THF at 0 °C, caused β-elimination affording α,β-unsaturated derivative 16, probably the result of the strong basicity of F−.14 Further studies showed that desilylation with TBAF-HOAc in THF,15 gave a mixture of 13 and 16 (the reaction rate and product ratio were strongly affected by the amount of added HOAc). The same reaction in the presence of the nearly neutral Et\textsubscript{3}N-3HF16 proceeded cleanly, providing only the desired acceptor 13.

The glycosyl donor containing a latent C-4 glycosyl acceptor, was synthesized by debenzylation of 9 with H\textsubscript{2} and 5% Pd on activated carbon in MeOH/ EtOAc (1:1),17 quantitatively affording 11. A mixture of the α,β trichloracetimidates (β predominant) 14 was then easily formed (89% from 11) by treatment with CCl\textsubscript{3}CN in the presence of anhydrous K\textsubscript{2}CO\textsubscript{3}. Because of concern about the stability of the silyl group in coupling reactions using BF\textsubscript{3}·Et\textsubscript{2}O catalyst,18 the silyl compound 9 was also converted to chloracetyl compound 10 by desilylation, followed by acylation with chloroacetic anhydride and TEA in anhydrous CH\textsubscript{2}Cl\textsubscript{2}. Donor 15 (α predominant) was then obtained through debenzylation (H\textsubscript{2}, 5% Pd-C) and activation (DBU, CCl\textsubscript{3}CN, CH\textsubscript{2}Cl\textsubscript{2}) of the anomic center.

It is worth noting that the preparation of 2,3-di-O-benzylated derivative is not straightforward by standard benzylaion conditions (BnBr and NaH in DMF) using this strategy, as a mixture of the corresponding methyl and benzyl esters are formed.

Acknowledgements: We thank Dr. William R. Kearney for his NMR technical assistance. This work was supported by NIH grant GM38060.

REFERENCES AND NOTES:

8. We followed one publication (G. Blatter and J.-C. Jacquetin, *Carbohydr. Res.* 1996, **288**, 109-25) to make **13**, but obtained the 3,4-di-O-, 2,4-di-O-, and 2,3-di-O-benzoylated isomers in a ratio of 5:1:5:3:5. Total yields were 80-90%.
11. Selected ¹H-NMR data for compounds **3-16** [values of δ (500 MHz)] were measured for solutions in CDCl₃ except **3** which was in D₂O. For brevity, chemical shifts of aromatic hydrogens have been omitted. **3**: δₘ(D₂O)=3.38 (br t, 1 H, H-2), 3.50 (br t, 1 H, H-3), 3.61 (br t, 1 H, H-4), 3.95 (d, 1 H, J₄₅=9.7 Hz, H-5), 4.55 (d, 1 H, J₃₄=8.0 Hz, H-1), 4.70, 4.90 (2 d, 2 H, J=11.7 Hz, PhCH₂); ¹³C-nmr for **3**: δ(c(D₂O)=74.2, 74.5, 75.7, 77.6, 78.2, 104.2, 131.4, 131.6, 131.7, 139.4, 175.5 ppm. **5**: δₘ=1.98, 2.01 (2 s, 2 x 3 H, 2 CH₂CO), 4.29 (m, 1 H, J₃₅ < 1, J₄₃=3.8 Hz, H-5), 4.74, 4.94 (2 d, 2 H, J=12.5 Hz, PhCH₂), 4.92 (br s, 1 H, J₃₅<1 Hz, H-1), 5.07 (m, 1 H, J₄₅=5.1, J₃₄ < 1, J₂₄=1.2 Hz , H-4), 5.10 (m, 1 H, J₂₃ =3.6 Hz, H-3), 5.26 (m, 1 H, H-2). **8**: δₘ=0.81 (s, 9 H, (CH₃)₃C-), 3.62 (s, 3 H, COOCH₃), 3.98 (dd, 1 H, J₁₂=7.0 Hz, J₂₃=9.2 Hz, H-2), 4.20, 4.78 (2 d, 2 H, J=11.0 Hz, PhCH₂), 4.26 (d, 1 H, J₄₅=9.5 Hz, H-5), 4.74 (d, 1 H, H-1), 5.37 (dd, 1 H, J₃₄=9.2 Hz, H-4), 5.81 (t, 1 H, H-3). **9**: δₘ=0.82 (s, 9 H, (CH₃)₃C-), 3.50 (s, 3 H, COOCH₃),
4.21 (d, 1 H, J_{3,4}=8.8 Hz, H-5), 4.49 (t, 1 H, J_{3,4}=8.8 Hz, H-4), 4.60, 4.84 (2 d, 2 H, J =12.5 Hz, PhCH_{2}), 4.82 (d, 1 H, J_{1,2}=8.1 Hz, H-1), 5.18 (dd, 1 H, J_{2,3}=8.4 Hz, H-2), 5.57 (dd, 1 H, H-3). 10: δ_{H}=3.80 (s, 3 H, COOCH_{3}), 3.94 (2d, 2 H, CICH_{2}CO), 4.24 (d, 1 H, J_{4,5}=9.9 Hz, H-5), 4.68, 4.95 (2 d, 2 H, J =12.5 Hz, PhCH_{2}), 4.80 (d, 1 H, J_{1,2}=7.3 Hz, H-1), 5.53 (dd, 1 H, J_{2,3}=9.2 Hz, H-2), 5.56 (dd, 1 H, J_{3,4}=9.5 Hz, H-4), 5.67 (dd, 1 H, H-3). 11: (α anomer) δ_{H}=0.82 (s, 9 H, (CH_{3})_{3}C-), 3.50 (s, 3 H, COOCH_{3}), 4.44 (t, 1 H, J_{3,4}=J_{4,5}=9.0 Hz, H-4), 4.75 (d, 1 H, H-5), 4.93 (dd, 1 H, J_{1,2}=3.5 Hz, J_{2,3}=9.6 Hz, H-2), 5.61 (d, 1 H, H-1), 6.01 (dd, 1 H, H-3). 13: δ_{H}=3.30 (d, 1 H, J_{4,10}=3.3 Hz, OH), 3.89 (s, 3 H, COOCH_{3}), 4.15 (d, 1 H, J_{4,5}=9.8 Hz, H-5), 4.22 (dd, 1 H, J_{3,4}=9.2 Hz, H-4), 4.69, 4.93 (2 d, 2 H, J =12.4 Hz, PhCH_{2}), 4.76 (d, 1 H, J_{1,2}=7.7 Hz, H-1), 5.46 (dd, 1 H, J_{2,3}=9.5 Hz, H-2), 5.52 (dd, 1 H, H-3). 14: (β anomer) δ_{H}=0.85 (s, 9 H, (CH_{3})_{3}C-), 3.65 (s, 3 H, COOCH_{3}), 4.27 (d, 1 H, J_{4,5}=8.0 Hz, H-5), 4.49 (dd, 1 H, J_{3,4}=7.6 Hz, H-4), 4.51, 4.94 (2 d, 2 H, J =11.6 Hz, PhCH_{2}), 5.18 (dd, 1 H, J_{2,3}=8.0 Hz, H-2), 5.57 (dd, 1 H, H-3), 6.11 (d, 1 H, J_{1,2}=3.1 Hz, H-1), 8.70 (br s, 1 H, NH). 15: δ_{H}=3.78 (s, 3 H, COOCH_{3}), 3.96 (2d, 2 H, CICH_{2}CO), 4.63 (d, 1 H, J_{4,5}=9.9 Hz, H-5), 5.53 (dd, 1 H, J_{1,2}=3.7 Hz, J_{2,3}=9.9 Hz, H-2), 5.59 (t, 1 H, J_{3,4}=9.9 Hz, H-4), 6.11 (t, 1 H, H-3), 6.85 (d, 1 H, H-1), 8.70 (s, 1 H, NH). 16: δ_{H}=3.83 (s, 3 H, COOCH_{3}), 4.72, 4.98 (2 d, 2 H, J =11.7 Hz, PhCH_{2}), 5.55 (br s, 1 H, H-2), 5.57 (br s, 1 H, H-1), 5.59 (br d, J_{3,4}=4.8 Hz, H-3), 6.43 (d, 1 H, H-4).

12. Basic properties of this unknown compound: m.p. 122-124°C (uncorrected); FABMS m/z 413 (M+H)^{+}; 1H NMR δ_{H}(CDCl_{3})=1.65 (s, 3 H), 4.43 (d, 1 H, J =3.0 Hz), 4.54, 4.88 (2 d, 2 H, J =11.7 Hz, PhCH_{2}), 4.99 (br s, 1 H), 5.16 (br s, 1 H), 5.22 (br s, 2 H), 7.30-8.15 (m, 10 H).

17. Surprisingly, hydrogenation of 9 in 90% EtOH, EtOAc or MeOH did not work well, while a mixture of EtOAc and MeOH (1:1) gave an excellent yields; Hydrogenation of 8, gave good yields in either 90% EtOH, EtOAc or MeOH.