Quantitative capillary electrophoresis determination of oversulfated chondroitin sulfate as a contaminant in heparin preparations

Nicola Volpi a,*, Francesca Maccaria a, Robert J. Linhardt b

a Department of Biologia Animale, Section of Biochemistry, University of Modena and Reggio Emilia, 41100 Modena, Italy
b Departments of Chemistry, Biology, and Chemical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

A R T I C L E I N F O

Article history:
Received 12 January 2009
Available online 14 February 2009

Keywords:
Oversulfated chondroitin sulfate
Heparin
GlcN
GalN
Capillary electrophoresis
Anthrаниlic acid

Heparin (Hep) is a linear sulfated natural polysaccharide consisting of 1-4 linked pyranosyluronic acid (uronic acid, either α-L-iduronic or β-D-glucuronic acid with some O-sulfo substitution) and 2-amino-2-deoxy-d-glycopyranose (α-D-glucosamine [GlcN] with either N-sulfo or N-acetyl substitution) repeating units [1]. It belongs to the family of glycosaminoglycans (GAGs) endowed with anticoagulant and antithrombotic properties [1–3] used clinically over the past half-century as an anticoagulant drug [1]. Unfortunately, Hep possesses several undesirable side effects that include dangerous hemorrhagic complications [4,5]. It was for this reason that low-molecular-weight (LMW) Heps (average molecular mass of 3000–8000) were introduced as Hep substitutes having reduced side effects, more predictable pharmacological action, sustained antithrombotic activity, and improved bioavailability [6,7].

Recently, patients presented, within several minutes after intravenous infusion of Hep, angioedema, hypotension, swelling of the larynx, and related symptoms that in some cases ended in death [8–10]. The contaminant was identified as an unusual oversulfated form of chondroitin sulfate (OSCS) present in high content in suspect lots of Hep [8]. Furthermore, dermatan sulfate (DS), a known impurity of Hep [11], was also found in selected samples with no other contaminant or impurities observed. Finally, initial reports have suggested that this OSCS macromolecule was also present in LMW Hep formulations [10] with a greater difficulty to be detected depending on the depolymerization process adopted [10].

The structure of the OSCS contaminant, present within specific lots of Hep, has been fully identified by using multiple orthogonal techniques, including multidimensional nuclear magnetic resonance (NMR), to overcome the challenges inherent in the analysis of complex polysaccharides, including Hep [8]. The structure of OSCS was definitively confirmed as formed of disaccharide repeat units of β-D-glucuronic acid linked β1→3 to a β-N-acetyl-D-galactosamine (GalN). The disaccharide unit was found to possess an unusual sulfation pattern, being sulfated at the 2- and 3-positions of the glucuronic acid as well as at the 4- and 6-positions of the GalN unit [8].

© 2009 Elsevier Inc. All rights reserved.

Abbreviations used: Hep, heparin; GAG, glycosaminoglycan; LMW Hep, low-molecular-weight heparin; GlcN, glucosamine (2-amino-2-deoxy-D-glucose); OSCS, oversulfated chondroitin sulfate; DS, dermatan sulfate; NMR, nuclear magnetic resonance; GalN, galactosamine (2-amino-2-deoxy-D-galactoside); CE, capillary electrophoresis; AA, anthranilic acid (2-aminobenzoic acid); CS, chondroitin sulfate; Rib, ribose; CSA, chondroitin sulfate A; CSC, chondroitin sulfate C; API, active pharmaceutical ingredient; UV, ultraviolet; LOD, limit of detection; LOQ, limit of quantification; MT, migration time; PA, peak area; CV%, relative standard deviation percentage; REC%, recovery ratio percentage.
Due to the nature of this contaminant, traditional screening tests and analytical approaches are unable to differentiate between contaminated and uncontaminated lots. Furthermore, the methodology used for the initial characterization of this contaminant (i.e., multiple orthogonal techniques, including multidimensional NMR [8]) is complex, expensive, and not useful for quality assurance in quality control laboratories because it is unable to process many samples in a short time and to give quantitative results with low coefficient of variation values. In contrast, capillary electrophoresis (CE) has been applied in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides, such as monosaccharides, affording concentration and structural characterization data due to its high resolving power and sensitivity [12]. In this article, a validated CE method has been developed for the quantitative determination of OSCS in Hep preparations after degradation of the polysaccharides to produce hexosamine units (i.e., GlcN from Hep and GalN from OSCS), their derivatization with anthranilic acid (AA, 2-amino- benzoic acid), and separation by means of CE at 214 nm. Furthermore, a preliminary step of specific enzymatic treatment may be applied for the specific elimination of interference in the analysis due to the possible presence in Hep samples of natural chondroitin sulfate (CS)/DS [11]. Finally, this analytical approach has been performed on raw material such as Hep final formulations and is also potentially applicable to LMW Hep preparations.

Materials and methods

Materials

\(\text{d}(-)-\text{GlcN hydrochloride, d}(-)-\text{GalN hydrochloride, } \sigma\text{-ribose (Rib), AA, sodium cyanoborohydride, chondroitinase ABC, chondroitin AB lyase from Proteus vulgaris (EC 4.2.2.4), 0.5 to 2.0 units/mg, were obtained from Sigma–Aldrich. Chondroitin sulfate A (CSA) from bovine trachea, chondroitin sulfate C (CSC) from shark cartilage, DS, and Hep from porcine intestinal mucosa were obtained from Sigma. Microcon YM-3 filters having a molecular mass cutoff of 3000 Da were obtained from Amicon. All other reagents were of analytical grade. OSCS was prepared from CS according to previously published procedures [8,10,13]. A contaminated Hep active pharmaceutical ingredient (API) sample, a contaminated raw Hep sample, and a contaminated formulated Hep sample were obtained from Hep manufacturers [10].}\)

NMR analysis

The \(^{13}\text{C}-\text{NMR} \) spectra of OSCS were recorded by a Bruker AMX400 WB spectrometer operating at 100.61 MHz. The sample was previously lyophilized three times with D\(_2\)O and finally prepared by dissolving 200 mg in 2.0 ml of D\(_2\)O at a high level of deuteration (99.997%). The spectra were recorded at a temperature of 33 °C and pH 6.5 unless otherwise specified.

Sample preparation

Stock solutions of GlcN and GalN standard were prepared by dissolving an accurately weighed amount of 50 mg in 5 ml (10 mg/ml) of doubly distilled water. A series of standard solutions were obtained by dilution of the stock solution in a standard volume of water (200 µl) and lyophilized.

Samples were prepared by dissolving an accurately weighed amount (10 mg) of sample in 10 ml (1 mg/ml) of doubly distilled water. Sample solutions (200 µl) were lyophilized and reconstituted with 200 µl of accurately prepared 2 M HCl. After 60 min at 110 °C (see below for the time course of chemical treatment), the samples were reconstituted with 2 ml of doubly distilled water and lyophilized.

In the case of pretreatment with chondroitinase ABC to degrade possible CS/DS impurity, Hep samples (200 µl of the above-prepared solutions) were incubated with enzyme (40 µl containing 100 milliunits) and 260 µl of 50 mM ammonium acetate at pH 8.0 for 12 hours at 37 °C. After boiling for 5 min, the samples were filtered on the YM-3 centrifugal filters at 10,000 rpm for 60 min. The undegraded polysaccharides (i.e., Hep and OSCS) were recovered from the retentate, lyophilized, and submitted to chemical hydrolysis with 2 M HCl (as described above).

Derivatization of hexosamine with AA

Lyophilized GlcN and GalN standard solutions or treated samples, in the presence of internal standard Rib, were dissolved in 50 µl of 1% fresh sodium acetate and 50 µl of AA (30 mg) and sodium cyanoborohydride (20 mg) dissolved in 1 ml of methanol–acetate–borate solution (120 mg of sodium acetate and 100 mg of boric acid in 5 ml of methanol) [14]. Tubes were heated at 80 °C for 60 min. After cooling to room temperature, the samples were made up to 150 µl with doubly distilled water and analyzed by CE.

Capillary electrophoresis

CE was performed on a Beckman HPCE instrument (P/ACE system 5000) equipped with an ultraviolet (UV) detector set at 214 nm. Separation and analysis were performed on an uncoated fused-silica capillary tube (50 µm i.d., 85 cm total length, and 65 cm from the injection point to the detector) at 25 °C. The working buffer was composed of 150 mM HCl and 50 mM NaH\(_2\)PO\(_4\) buffered at pH 7.0 with NaOH solution. The buffer was degassed by vacuum filtration through a 0.2-µm membrane filter, followed by agitation in an ultrasonic bath. Before each run, the capillary tube was washed with 0.1 M NaOH for 1 min, washed with doubly distilled water for 5 min, and then conditioned with the operating buffer for 5 min. The samples to be analyzed were injected automatically using the pressure injection mode in which the sample is pressurized for 10 s. The injection volume can be calculated with Poiseuille's equation as proposed by the manufacturer, giving an estimated volume of 6 nl per second of injection time. Electrophoresis was performed at 15 kV (~35 µA) using normal polarity. Peak areas were recorded and calculated using the Beckman software system Gold V810.

Validation of analytical method

The quantitative CE/UV method validations were established according to the Guidance for Industry: Bioanalytical Method Validation (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine) published in May 2001 [15], including specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, recovery, and robustness tests. The detection limits were estimated as the quantity of GlcN and GalN producing signal/noise ratios of 3:1 for LOD and 10:1 for LOQ. The specificity of the CE/UV technique was determined with migration time (MT) and peak area (PA) of the two hexosamine peaks through the precision analysis assay. The calibration curves were constructed from PA versus concentrations of GlcN/GalN standard. Linear regression analysis was used to calculate the slope, intercept, and correlation coefficient (\(r^2\)) of the calibration curve. The precision of the method was assessed by determination of hexosamines with five replicates (n = 5) of five different concentrations (from 240 to 2400 pg) of standard solutions. Intra- and interday precision and accuracy of the method were estimated by relative standard deviation percentage.
(CV%) from the analysis of freshly prepared solutions on 3 separate days. For recovery of GlcN from Hep, GlcN standard was added to a sample of noncontaminated Hep, and for recovery of GalN, the standard was added to a sample of OSCS, as described previously. The solutions were spiked with GlcN/GalN standard at three concentration levels (120, 150, and 200% of the normal hexosamine concentration in the preparations) and then analyzed. The solutions were replicated three times each, and the GlcN/GalN amounts determined were compared with the theoretical amounts. The recovery ratio percentage (REC%) and their CV% were calculated. Robustness was assessed by analysis of the standards in different analytical conditions, in particular temperature, voltage, and buffer composition no more and no less than 10% of the adopted values.

Results

OSCS was prepared from CS according to previously published procedures [8,10,13] (Fig. 1), having a peak molecular weight (M_p, the molecular weight value on the top of the chromatographic peak) value of 10,970, a number average molecular weight (M_n) of 11,090, a weight average molecular weight (M_w) of 16,590, and a polydispersity index (p) of 1.496 as determined by high-performance size exclusion chromatography [16]. These values are quite comparable to the molecular mass values of commercial Hep [10,16]. OSCS and Hep samples were then subjected to the hydrolysis procedure to produce free hexosamines, GlcN and GalN, before their derivatization with AA and separation by CE. The hydrolysis process involves two acid-catalyzed steps, the hydrolysis of glycosidic linkage and the N-acetyl (and N-sulfo in the case of Hep) groups (resulting in de-N-acytelyation or de-N-sulfonation), with the formation of the hexosamines. The OSCS and Hep hydrolysis procedure was carried out using HCl after evaluating both the effect of the acid concentration and the influence of the temperature and incubation time on the hydrolysis reaction. Optimal conditions were found at 110 °C using 2 M HCl for 60 min, affording a maximum percent-age of hydrolysis. Lower temperatures or times were found to produce lower hexosamine percentages, and stronger conditions were shown to degrade GlcN and GalN. Other conditions have also been reported to be advantageous to produce free hexosamines from GAGs [17] by using high HCl concentrations (7.5 N) and long reaction times (8 h) at low temperatures (80 °C). However, these conditions are not useful for quality assurance in quality control laboratories, which need to process many samples in a short time.

According to previous studies [14,18,19], GlcN and GalN (and other monosaccharides) are derivatized under optimum conditions with AA in methanol–acetate–borate reaction medium to...
produce derivatives capable of strong absorbance at UV 214 nm. After a very short time (1 h) required for the derivatization process, hexosamines are separated by CE in approximately 10 min (Fig. 2) at a high sensitivity having a LOD of approximately 200 pg (Fig. 3). Furthermore, after derivatization with AA, GlcN and GalN showed same calibration curves (Fig. 3) with quite similar molar absorptivities, making this method useful for direct and simple quantification of OSCS in Hep samples (see below).

Mixtures with different absolute amounts of OSCS in Hep and various relative percentages of these two GAG species were prepared and analyzed by CE after the hydrolysis procedure and derivatization with AA (see Fig. 4 as an example). Due to the very high sensitivity of the CE method (Fig. 3), we were able to observe as little as 1% OSCS contaminant in the Hep sample (Fig. 5) with a very good linear response (coefficient of regression >0.995 [Fig. 6]) between theoretic and analytically evaluated percentage values of OSCS in Hep.

The intra- and interday variations (CV%) for the two hexosamines, under the experimental conditions adopted, were between 3.4 and 8.5 for MT and between 2.5 and 5.8 for PA. The calibration curve showed good linearity for the examined concentration range, 240 to 2400 pg (40–400 μg/ml), with an average correlation coefficient greater than 0.980 (Fig. 3). The LOD and LOQ of the method were approximately 200 and 500 pg, respectively, and the intra- and interday accuracy values were estimated to range from 2.2% to 7.9%. The percentage recoveries of hexosamines were calculated to be 92% for the three various concentrations tested in the Hep and OSCS preparations, and variations in temperature, voltage, and buffer composition in comparison with adopted conditions within a 10% limit do not modify the electrophoresis results. Finally, GlcN and GalN were shown to be stable in the hydrolysis conditions after 1 month at −20 °C in comparison with the hexosamines in aqueous solution not submitted to the hydrolysis procedure.

CE was applied for the determination of GalN (and GlcN) in several samples—CSA, CSC, DS, OSCS, noncontaminated Hep, contaminated raw Hep, and a formulated contaminated Hep sample—in the absence and presence of previous treatment with chondroitin ABC lyase (also considering that there are no known contaminants in Hep samples able to interfere with enzymatic digestion [11]). As expected, CS samples and DS were found to produce 100% GalN with no presence of GlcN, whereas almost no GalN was detected by CE after treatment with chondroitinase ABC due to the complete degradation of these GAGs by this lyase. In contrast, OSCS produced 100% GalN (with no GlcN) after acidic hydrolysis with no modification after the enzymatic treatment, showing the incapacity of this lyase to act on this oversulfated semisynthetic polymer, as already reported [8].

As expected, non-
contaminated Hep produced nearly 100% GlcN (with trace amounts of GalN) after HCl treatment irrespective of the enzymatic treatment (even if no GalN was evident after lyase treatment). Finally, contaminated raw Hep was found to contain 38.9% OSCS (as GalN% in Fig. 7A), whereas the formulated contaminated Hep was calculated to have 39.7% OSCS (as GalN% in Fig. 7B).

Discussion

AA is well known for its utility in the determination with high sensitivity by means of high-performance liquid chromatography or CE of the monosaccharide composition of glycoproteins [14,19] and GAGs [20,21] such as GlcN in nutraceuticals [22]. This approach was also applied for the sensitive quantitative determination of OSCS in Hep raw material and formulations as well as in the presence of natural Hep contaminants, in particular DS [11], by performing a simple pretreatment step with chondroitinase ABC that is able to degrade CS/DS (and hyaluronic acid) but unable to act on OSCS. Furthermore, GlcN and GalN showed same calibration curves with quite similar absorbance capacities after derivatization with AA that is useful for direct and simple quantification of OSCS in Hep samples by just considering their relative percentages. Finally, Hep samples for CE analysis are prepared in a short time after their lyophilization—1 h for acidic treatment and, after a further step of lyophilization, 1 h for the derivatization step, suitable for the processing of several samples in a day also considering the rapid analysis enabled by CE (~15 min). In the case of enzymatic pretreatment, 1 more day is required. The lyophilization step is required after the acidic hydrolysis before derivatization to ensure the removal of all the possible water present in the products because it is well known that reductive amination of hexosamines is inhibited to a maximum of 30% at 50% water content [14].

OSCS also contaminated LMW Heps obtained by enzymatic or different chemical depolymerization of Hep, and the sensitivity of OSCS to various depolymerization processes similar to ones used in preparing commercial LMW Heps has been reported [10]. In particular, a base-catalyzed β-eliminative process and treatment in the presence of free radicals afford complex mixtures of LMW Heps and OSCS having a reduced molecular mass that might mask the presence of this contaminant in certain assays and would be difficult to detect in contaminated batches [10]. As a consequence, the illustrated analytical approach may be potentially applicable also to LMW Hep preparations due to its capacity to detect and measure the two different hexosamine units forming Hep and OSCS. Finally, due to the fluorescence properties of AA, a more sensitive CE separation with laser-induced fluorescence detection is expected for GalN and GlcN to evaluate the possible presence of OSCS contaminants in Hep preparations.
References

