Research Article

Microarray platform affords improved product analysis in mammalian cell growth studies

Payel Datta,¹, * Luciana Meli,², * Lingyun Li,³ Nicole Migliore,⁴ Eugene Schaefer,⁴ Susan T. Sharfstein,⁵ Jonathan S. Dordick,¹, ³, ⁶, ⁷ and Robert J. Linhardt¹, ², ³, ⁷

¹ Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
² Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
³ Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
⁴ Janssen Biotech, Inc., Horsham, PA, USA
⁵ College of Nanoscale Science and Engineering, University at Albany, Albany, NY, USA
⁶ Department of Materials Science and Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
⁷ Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA

High throughput (HT) platforms serve as a cost-efficient and rapid screening method for evaluating the effect of cell-culture conditions and screening of chemicals. We report the development of a HT cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/methionine sulfoximine (MSX) CHO cell line, which produces a therapeutic monoclonal antibody, was examined using a microarray system in conjunction with a conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60-nL spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production, and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base medium results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the HT microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as cell growth, metabolism, and productivity.

Keywords: Cell-based microarray · CHO cells · High throughput · Media optimization · 3D cell culture

1 Introduction

Chinese hamster ovary cells (CHO) have been widely employed for industrial production of biopharmaceutical products such as monoclonal antibodies, hormones, cytokines, and blood-products [1, 2]. The critical goal of industrial production of biotherapeutics from CHO cells is production of copious amounts of properly post-transla-
tionally modified recombinant biotherapeutics from robust cells in a cost-effective manner. Strategies to increase productivity include cellular engineering of cell lines, sub-cloning to isolate high producing clones, gene-amplification systems (DHFR/MTX and GS/methionine sulphoximine (MSX) systems), process development (batch, fed-batch, perfusion, etc.), and media optimization [1]. The large number of recombinant biopharmaceutical candidates entering different stages of development has placed increasing pressure on the biopharmaceutical companies to accelerate cell-culture development to deliver this pipeline and contain development costs. Cell-culture development, including strain selection, process optimization (medium formulation), and scale up, has traditionally been a labor-intensive process that is limited by the number of conditions that can be tested.

In recent years, there have been significant efforts to develop high-throughput (HT), miniaturized cell-culture systems that can improve the efficiency of the development process by allowing HT parallel operation, while reducing the cost of reagents, thus permitting the exploration of a vast space of culture conditions. HT platforms serve as a cost-efficient and rapid screening method for evaluating the effect of cell-culture conditions and screening of chemicals, including novel drugs in cell-culture systems [3–13]. In addition, commercial systems such as deep well, and AMBR/TAP systems have been utilized for evaluating cell-culture systems. However, to date, there is no universal platform for optimizing cell-culture development. A three-dimensional (3D) cell-culture chip (the microarray DataChip) was developed that can be utilized to perform rapid screening of the effects of culture medium on cell growth rate, maximum viable cell density, and protein expression levels. The microarray DataChip, which can contain up to 1080 individual mammalian cell cultures on a micro-scale size glass slide (chip), has been used to cultivate a wide range of human and animal cell lines (liver, breast, pancreatic, colon, neural) and primary cells (hepatocytes, astrocytes, cardiomyocytes), as well as embryonic and adult stem cells [4, 10]. The HT cell-culture platform has the potential to be utilized for drug discovery (e.g. evaluating impact of novel drugs), human toxicology studies (e.g. evaluating potent anthropogenic compounds), and media optimization (e.g. evaluating impact of media components on cell growth and recombinant protein production).

Media development has been used to optimize CHO cell growth and/or the transgene expression in bio-processes [14–17]. Media components such as carbon source, nitrogen sources, copper sulfate, manganese sulfate, and zinc sulfate and bioreactor temperature, pH, and shear stress can also impact cell growth, productivity, and post-translational modifications of the transgenic protein produced [2, 17–23]. There are two strategies to increase productivity in cell lines with media optimization (i) increase specific productivity (i.e. amount of recombinant monoclonal antibody produced per cell of a bioreactor/day) and (ii) increase cell yield (i.e. the total integrated viable cell density (IVCD) for the culture duration). The aim of this study is to develop a HT microarray DataChip platform for examining the effect of media components on cellular processes, such as, growth, productivity, metabolism, and its potential application towards on-chip metabolic pathway studies. In this work, first, (i) a defined non-proprietary medium was optimized for growth of a recombinant monoclonal antibody-producing GS/MSX CHO cell line, followed by (ii) optimization of a 3D HT microarray platform for studying the effects of different concentrations of media additives on cell growth, metabolism, and productivity, and (iii) validation of the 3D HT platform in conjunction with the conventional scale-up shake flask platform. The 3D HT platform consists of DataChip microcultures separated in groups via an 8-well chamber system attached to the chip. Live–dead assays performed on the microarray spots, in conjunction with IgG competition assays and metabolite analysis, provide quantitative information on cell growth, protein production, and metabolism. In addition, cell-conditioned medium was utilized to study the glycosylation pattern of the product using hydrophilic interaction chromatography (HILIC)-Fourier transform mass spectrometry (FTMS).

2 Materials and methods

2.1 Optimization of a non-proprietary medium and adaptation of CHO cells in the non-proprietary medium

A recombinant GS/MSX CHO cell line (CHO-A1, which produces a proprietary monoclonal antibody immuno-globulin type G (IgG), 150 kDa), was provided by J&J, Janssen Biotech and used as the model cell line. In addition, the host GS/MSX CHO cell line (CHO-H1) was also provided by J&J, Janssen Biotech. A non-proprietary medium previously designed for the growth of DHFR/MTX CHO cell lines was used as the starting point for this study [19]. The non-proprietary medium was modified for the growth of the model recombinant CHO-A1 cell line and host CHO-H1 cell lines. The non-proprietary medium (Table 1) was prepared in sterile glass bottles. Following addition of all the supplements, the medium was stirred for 1 h, and the pH was subsequently adjusted to 7.0. The medium was filter sterilized and stored at 4°C. Prior to use, the medium was supplemented with insulin (Sigma–Aldrich, St. Louis, MO, USA) and 1% penicillin-streptomycin (Sigma–Aldrich). The host cells (CHO-H1) required addition of 20 mL of Glutamax supplement (Invitrogen) per 500 mL of medium, while the transfected cell lines were supplemented with 25 μM of GS inhibitor MSX.

The proprietary CHO cells, CHO-H1 and CHO-A1, were directly adapted to grow in non-proprietary medi-
quantified using the following equation:

\[
\text{Viable cells / mL} = \frac{\text{viable cell number}}{\text{squares counted}} \times \text{dilution factor} \times 10^4 \tag{1}
\]

### Table 1. Non-proprietary medium formulation\(^a\)

<table>
<thead>
<tr>
<th>Base</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum essential eagle, Alpha modification, with ribonucleosides, deoxyribonucleosides and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture (Sigma–Aldrich)</td>
<td>500 mL</td>
</tr>
<tr>
<td>Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 Ham, with 15 mM HEPES and sodium bicarbonate, without L-glutamine and phenol red, liquid, sterile-filtered, suitable for cell culture (Sigma–Aldrich)</td>
<td>500 mL</td>
</tr>
</tbody>
</table>

### Supplements

<table>
<thead>
<tr>
<th>Amounts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>2 g</td>
</tr>
<tr>
<td>Pluronic F-68</td>
<td>4 g</td>
</tr>
<tr>
<td>NaHCO(_3)</td>
<td>1.3 g</td>
</tr>
<tr>
<td>Chelated ferric citrate</td>
<td>0.3 mM</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>0.04 mM</td>
</tr>
<tr>
<td>Bacto tryptone</td>
<td>2.5 g</td>
</tr>
<tr>
<td>Glutamine</td>
<td>292 mg</td>
</tr>
<tr>
<td>Glutamate</td>
<td>292 mg</td>
</tr>
<tr>
<td>Putrescine</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>MnSO(_4)·H(_2)O</td>
<td>0.2 µg</td>
</tr>
<tr>
<td>Na(_2)SeO(_3)</td>
<td>2 µg</td>
</tr>
<tr>
<td>(NH(_4))(_2)MoO(_4)·4H(_2)O</td>
<td>0.01 mg</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>NH(_4)VO(_3)</td>
<td>1 µg</td>
</tr>
<tr>
<td>Insulin</td>
<td>5 mg</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Glutamax</td>
<td>Varies as per cell line</td>
</tr>
<tr>
<td>Hypoxanthine–thymidine</td>
<td>Varies as per cell line</td>
</tr>
<tr>
<td>Methionine sulfoximine (MSX)</td>
<td>Varies as per cell line</td>
</tr>
</tbody>
</table>

### Amino acids

<table>
<thead>
<tr>
<th>Amounts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Proline</td>
<td>20 µM</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>20 µM</td>
</tr>
<tr>
<td>L-Serine</td>
<td>20 µM</td>
</tr>
<tr>
<td>L-Histidine</td>
<td>20 µM</td>
</tr>
</tbody>
</table>

\(^a\) Per 1 L of medium.

2.2 Preparation of 3D microarray cultures

The CHO cells were cultured in 3D microarrays by embedding them in alginate, and printing the solution mixture in 60 nL spots onto hydrophobic glass slides. Briefly, a poly-L-lysine (PLL)–BaCl\(_2\) mixture was prepared by mixing a sterile 0.1 M BaCl\(_2\) solution in deionized water with a 0.01% w/v sterile PLL solution (Sigma) in a 1:2 volume ratio. The PLL-Ba\(^{2+}\) mixture was spotted onto poly(styrene-co-maleic anhydride) (PSMA) coated glass slides using a MicroSys 5100-4SQ microcontact microarray spotter (DigiLab), making a 6 × 8 × 8 patterned array of 60 nL spots on the chip and allowing them to dry. A CHO cell suspension in medium was then mixed with a low viscosity alginic acid (Sigma) solution in deionized sterile water such that the final alginate concentration was 1% w/v, and the concentration of cells in suspension was 3.3 × 10\(^6\) cell/mL. Subsequently, the cell-alginate mixture was printed (60 nL/spot, 200 cells/spot) on top of the dried PLL-Ba\(^{2+}\) spots, which allowed the nearly instantaneous gelation of the alginate matrix. During the printing process, the humidity in the microarray chamber was maintained above 90% to prevent water evaporation of the spots. Following printing, the slides were fitted with a commercially available 8-well polystyrene medium chambers coated with a biocompatible adhesive (Lab-Tek II, Nunc) that allowed firm attachment of the chips to the chambers, and physically separated groups of spots within the slide. Each of the chambers, containing 48 cell-culture spots, was filled with 250 µL of non-proprietary medium. After medium addition, the chambers were covered with gas-permeable sealing membranes (Diversified Biotech), and the chips placed in segmented dishes (Thermo Scientific Nunc) with the surrounding wells filled with sterile deionized water to prevent media evaporation. The cells were then cultured at 37°C in a 5% CO\(_2\) humidified incubator. Terminal harvest samples taken at different culture time points were generated by carefully removing the medium from one of the replicate chips, weighing the resulting mass of medium to assess the percentage of evaporation, and freezing the samples at −20°C. Following media recovery, chambers could be easily removed with a slide separator.

2.3 Cell viability assay

Cellular viability and growth on the 3D microarrays was assessed via a live/dead viability/cytotoxicity kit for mammalian cells (Invitrogen). After complete media recovery, the slides were separated from the chamber, and subsequently rinsed twice with a wash solution.
(140 mM NaCl (Sigma–Aldrich) and 20 mM CaCl₂ (Sigma) at pH 7). The slides were then immersed in a 0.5 μM calcein AM/ethidium homodimer 1 solution to detect viable and dead cells via green and red fluorescence, respectively. After 45 min of incubation at room temperature, the dye was removed and the chips rinsed thoroughly with the wash solution and then dried. The slides were finally scanned with a GenePix 4200A scanner (Molecular Devices) using 488 nm excitation, with a standard blue filter and a 645AF75/594 filter for detection of the green and red dye, respectively. The fluorescence intensity from the resulting image was quantified with the GenePix Pro 6.0 software (Molecular Devices), and the cell number in each spot estimated based on a 6-point “viable-cell” standard curve prepared on the same day of printing. Determination of viability required the fabrication of a separate calibration curve for dead cells. This was achieved by permeabilizing the cells in calibrator samples with 0.15% saponin for 30 min, followed by live–dead staining. The ratio of the ethidium homodimer 1 fluorescence signal from the viable-cell standards to the dead-cell standards (total number of cells) yields the viability of the calibrators.

2.4 Evaluation of media additives in microarray 
DataChip and shake flask platforms

Media additives, pyruvate (Invitrogen), MEM non-essential amino acids (Invitrogen), MEM vitamins (Invitrogen), Mn²⁺ (Sigma–Aldrich), and glutamate (Sigma–Aldrich) were added at appropriate concentrations and pH was adjusted to pH 7.0. The medium was sterilized by filtration with a 0.22 μm syringe filter and stored at 4°C. On the day of the experiment, media were set at room temperature and were supplemented with 2% HT supplement, 1% penicillin–streptomycin, and insulin. The media were utilized in DataChip and/or shake flask platforms.

For HT evaluation of the effects of media additives using the DataChip, recombinant CHO-A1 cells were seeded onto the DataChip in the various media. The cells were cultured in a humidified 37°C incubator at 5% CO₂ for 8 days. Throughout the growth period, samples were analyzed by live–dead viability assay to determine the growth rates. When the samples were sacrificed for live–dead assays, cell-conditioned medium was collected and stored at −20°C for further analysis.

For validating the DataChip results, selected media additives were evaluated in parallel in a shake-flask platform. For shake-flask studies, recombinant CHO-A1 cells were seeded at 2 × 10⁶ cells/mL in a volume of 47 mL of medium in polycarbonate Erlenmeyer flasks (Corning) and cultured on orbital shakers agitated at 125 rpm in a humidified 37°C incubator at 5% CO₂. Cells were cultured until the cell viability dropped to 50%. Growth rates were analyzed by manual cell counting using trypan blue to estimate cell viability. Additionally, cell-conditioned medium was collected periodically at different time-points and stored at −20°C for evaluating recombinant antibody production, and metabolite profiling.

2.5 Meso Scale Discovery (MSD) competition 
assay for IgG titer

The amount of recombinant monoclonal antibody (IgG1) production was determined using a competition assay on MSD’s low-capacity Protein A coated plates, in the presence of a SULFO-TAG™-labeled IgG tracer.

SULFO-TAG™-labeled IgG tracer was prepared by tagging positive control IgG with MSD SULFO-TAG NHS-Ester (Meso Scale Diagnostics #R91AN) according to the manufacturer’s directions. Briefly, a 2-mg/mL solution of the IgG was prepared in preservative-free PBS, pH 7.9. The IgG solution was incubated with 32 nmol of MSD SULFO-TAG NHS-Ester (50 μL) at 23°C for 2 h in dark. This labeling reaction was purified with a pre-calibrated 40K MWCO ZEBA spin desalting column (Thermo Scientific #87768), according to the manufacturer’s instruction. The conjugation ratio was calculated using the following equation:

\[ \text{Conjugation ratio} = \frac{A_{455} \times MW_{IgG}}{\varepsilon_{\text{sulfo-tag}} \times C_{IgG}} \] (2)

In this equation, \( A_{455} \) is the absorbance of the SULFO-TAG IgG conjugate at 455 nm, \( MW_{IgG} \) is the molecular weight of the protein, \( \varepsilon_{\text{sulfo-tag}} \) is the extinction coefficient of the SULFO-TAG at 455 nm (15 400 M⁻¹ cm⁻¹), and \( C_{IgG} \) is the concentration of the protein conjugate determined using the BCA assay. The antibody was aliquoted and stored frozen at −20°C.

SULFO-TAG™-labeled IgG tracer (stored at −20°C) was used for determining IgG amount in the cell-conditioned medium. The IgG is a secreted antibody that is collected in the cell-conditioned medium. Cell-conditioned medium (1 mL) was collected on specified days and the corresponding viable cell density was noted. The cell-conditioned medium was collected by centrifugation of the cells and cell-conditioned medium at 200g for 10 min and stored at −20°C. The cell pellet was discarded. The MSD IgG competition assay was performed on the cell-conditioned medium according to the manufacturer’s protocol (MSD® 96-well competition assay kit for IgG). Briefly, the low-capacity protein A-coated MSD plate was blocked with 100 μL of diluent 100 in each well, at room temperature for 1 h, followed by removal of the diluent 100 by washing three times with 50 μL of PBS/0.05% Tween-20. Mixtures of equal volumes of SULFO-TAG™-labeled IgG tracer and dilutions of control IgG tracer (ranging from 0 to 100 μg/mL) were used to generate a standard curve. The mixtures of cell-conditioned medium and control IgGs (50 μL per sample in each MSD well) were loaded on to the washed low-capacity protein A-coated MSD plate and incubated for 2 h with vigorous shaking (500 rpm) at room temperature. The MSD
plates were washed three times with 50 µL of PBS/0.05% Tween-20 and 150 µL of 1x Read Buffet T was added to each MSD well. The MSD plate was analyzed on the SECTOR® Imager (Meso Scale Diagnostics). The amount of IgG present in cell-conditioned medium was calculated based on the standard curve. The data was analyzed with MSD DAT software, which fits the standard curves using a four parameter logistic fit with 1/y² weighting:

\[ y = b_2 + \frac{(b_1 - b_2)}{1 + (x / b_3)^b_4} \]  

(3)

where \( x \) is the concentration, \( b_2 \) the estimated response at infinite concentration, \( b_1 \) the estimated response at zero concentration, \( b_3 \) is the mid-range concentration, and \( b_4 \) is the slope factor.

### 2.6 Glycan analysis

N-Linked oligosaccharides of the antibody were released by treatment with PNGase F (Sigma–Aldrich) overnight at 37°C following the protocol provided by Sigma–Aldrich. After releasing the N-glycans, the antibody was precipitated by addition of ethanol followed by centrifugation. The supernatant was dried in a SpeedVac and stored at -80°C for liquid chromatography-mass spectrometry (LC-MS) analysis.

The released N-glycans were analyzed on a hydrophilic interaction chromatography column (2.0 mm × 50 mm, Phenomenex Luna HILIC, Torrance, CA) coupled with electrospray ionization on an LTO-Orbitrap XL FTMS (Thermo Fisher Scientific, San Jose, CA). Mobile phase A was 5 mM ammonium acetate prepared with HPLC-grade water. Mobile phase B was 5 mM ammonium acetate prepared in 98% HPLC grade acetonitrile with 2% of HPLC-grade water. An Agilent 1200 HPLC binary pump was used to deliver the gradient from 10 to 80% A over 8 min at a flow rate of 250 µL/min after injecting the samples. The optimized MS parameters included a spray voltage of 4.2 kV, a capillary voltage of −40 V, a tube lens voltage of −50 V, a capillary temperature of 275°C, a sheath flow rate of 30 L/min, and an auxiliary gas flow rate of 6 L/min. External calibration of mass spectra routinely produced a mass accuracy of better than 3 ppm. All Fourier-transform mass spectra were acquired at a resolution 60,000 within 400–2000 Da mass range.

### 2.7 Metabolite analyses

Metabolite analyses were performed using either a YSI 7100 MBS (YSI Inc., Yellow Springs, OH) or a BioProfile FLEX (NOVA Biomedical, Waltham MA).

### 2.8 Data analysis

The specific growth rates, \( \mu \), were obtained from the exponential growth phase of the culture. This growth data, along with the titer values obtained from the MSD competition assay, allowed calculating the rate of mAb production in the exponentially growing culture. Specific productivities were extracted from the slope of a plot of IVCD versus mAb concentration, where the trapezoidal method was used to estimate the time integral of viable cell number:

\[ \text{IVCD} = \frac{X_t + X_{t-1}}{t_t - t_{t-1}} \]  

(4)

where \( t \) is time and \( X \) is the viable cell concentration. The cell and mAb concentrations above were corrected for the measured medium evaporation.

Data were analyzed with Student’s t-test to determine statistical differences between independent samples.

### 3 Results and discussion

#### 3.1 Development of a non-proprietary medium for growth of recombinant CHO cells

The first critical step of the project was to establish growth of the model CHO cell lines in a defined non-proprietary medium. A non-proprietary medium that had been developed for the growth of DHFR/MTX CHO cell lines was used as the starting point [19]. This non-proprietary medium was modified for the growth of the GS/MSX CHO cells (Table 1). During direct adaptation of the cells to the non-proprietary medium, it was observed that addition of 2% hypoxanthine–thymidine supplement (Gibco) was necessary to allow adequate cell growth, viability, and production of mAb. Cell growth and recombinant antibody production in the proprietary and defined non-proprietary medium were evaluated (Supporting information, Fig. S1). In addition, the glycoprotein secreted from the CHO-A1 cell line grown on non-proprietary medium was collected from 20 mL of medium recovered from shake flask culture. Treatment of recovered IgG glycoprotein with PNGaseF and analysis of released N-glycans showed three biantennary structures each with a bisecting fucose and containing 0, 1, and 2 sialic acid residues (Supporting information, Fig. S2). Thus, the defined non-proprietary medium developed allows for normal glycosylation of IgG glycoprotein.

#### 3.2 Design and optimization of a microarray DataChip platform for CHO cell growth

HT platforms for evaluating impact of media components on cellular processes, including recombinant protein production, are of critical importance. Based on the previous DataChip microculture platform [10], a 3D microarray chip was designed that is ideally suited to examine the effects of culture medium on CHO cell growth and specific mAb expression (Fig. 1A). A commercially available 8-well
The chamber system was attached to the DataChip to allow the screening of a number of medium additives provided to the wells, each of which contained 48 separate microcultures (60 nL/spot, 200 cells/spot) in an alginate matrix. By bringing the two together, the effects of the medium composition and solution conditions on cell growth could be determined in the DataChip using simple live–dead staining. Figure 1B represents scanned images of portions of the cellular microarrays demonstrating increased green fluorescence from the calcein dye as a function of culture time for both host (CHO-H1) and recombinant (CHO-A1) cell lines in the non-proprietary medium (base conditions). The fluorescence intensity is quantified using GenePix Pro software. A calibration curve obtained after printing chips with varying cell densities (Supporting information, Fig. S3) and assayed with live–dead stain immediately afterwards, was used to relate the fluorescence intensity to the number of cells in each spot. Figure 1C demonstrates that cell growth (left panel) and recombinant antibody production (right panel) in CHO-A1 cell line on DataChips. Cell growth was determined using cell viability assay. Recombinant monoclonal antibody production was determined with MSD competition assay. Data represents the mean ± SE of an experiment with 190 replicate microcultures for the live–dead assay, and two replicate conditioned media samples for antibody production.

The growth of the CHO cells in the 3D HT DataChip platform is limited by evaporation of the media and
integrity of microcultures during prolonged incubation. The small volumes of medium used in the chip cultures (250 µL/well) led to significant media evaporation throughout the course of the experiments, which caused important deviations in nutrient and metabolite concentration with culture time. This issue was addressed by both measuring precise changes in media mass with time to account for the evaporation and preventing evaporation through increased humidity in the environment (Supporting information, Fig. S4). In addition, brightfield microscopy images of the microcultures revealed some cell detachment from the alginate spots after 8 days of culture, whereas spot integrity was intact for previous samples (Supporting information, Fig. S5). This is probably due to the alginate matrix deterioration, as well as cell over-growth at long incubation times. Thus, terminal batch experiments up to only 6 or 7 days are possible with the current microarray setup.

3.3 Application of the microarray DataChip for evaluating media components on cellular processes

The HT DataChip platform was further utilized to evaluate impact of media additives (glucose, pyruvate, vitamins, non-essential amino acid, manganese, zinc, and copper) on cellular processes, including recombinant antibody production (Fig. 2 and Supporting information, Figs. S6–S10). It is important to note that evaporation rates of media for this experiment were substantial, as depicted in Supporting information, Fig. S11; however, the appropriate corrections in the measured concentrations were performed.

The effect of varying the concentration of glucose and pyruvate was examined, due to the importance of these compounds as carbon sources in glycolysis. The results show a significant decrease in cell growth with increas-

![Figure 2](image-url). Application of the DataChip for media optimization. Changes in (A) cell growth, and (B) productivity in response to variations in glucose (4, 4.8, 5.5, 7, and 10 g/L), pyruvate (0.08, 0.1, 0.14, and 0.19 mg/mL), and MEM vitamins (0×, 1×, 2×, and 4× concentration of the solution). Cell growth was determined using cell viability assay. Recombinant monoclonal antibody production was determined with MSD competition assay. Cell growth analysis data represents the mean ± SEM of an experiment with 48 replicate microcultures and pooled spent media from the 48 microcultures for antibody productivity analysis.
ing glucose concentrations (Fig. 2 and Supporting information, Fig. S6). With small increases in glucose concentration, slight increases in titer were also seen with a maximum titer of ~22 μg/mL at 5.5 g/L of glucose (specific productivity ~27 pg/cell/day). However, at higher glucose concentrations (27g/L), the overall titer was reduced, despite apparent increases in specific productivity due to the lower IVCD. These results are important since rigorous control of glucose concentrations is often necessary to minimize by-products, such as lactate and ammonia, and thus prevent media acidification. The addition of pyruvate led to a moderate increase in cell growth and a concomitant decrease in recombinant monoclonal antibody production with respect to the base medium, which ultimately resulted in a decrease in productivity at high pyruvate concentrations, from roughly 14 pg/cell/day in base conditions (0.08 mg/mL pyruvate) to 9 pg/cell/day at pyruvate concentrations of 0.19 mg/mL (Fig. 2 and Supporting information, Fig. S6). In contrast, the addition of increasing concentrations of a MEM vitamin solution negatively impacted both cell growth and mAb production, resulting in extremely low productivities at the higher vitamin concentrations (~1.5 pg/cell/day; Fig. 2 and Supporting information, Fig. S6). It was expected that MEM non-essential amino acids solution would enhance recombinant antibody production, since amino acids serve as the building blocks of proteins. These results show an increase in cell growth up to 2× concentrations of the amino acid solution that is offset by a similar increase in mAb concentration, resulting in nearly constant productivity (Supporting information, Fig. S7). In addition, variations of Mn²⁺ (Supporting information, Fig. S8), Cu²⁺ (Supporting information, Fig. S9), and Zn²⁺ (Supporting information, Fig. S10) on cell growth and productivity were analyzed. In all the chip platform experiments, growth data represents average ± standard error) of 48 technical replicates. The growth data does include the standard error, but it is small because of the large number of replicate cultures. Due to the miniaturization of the chip platform, the spent media from the 48 technical replicates were pooled to generate productivity data. Due to the fact that these experiments did not have biological replicates, it is difficult to discern if the changes in productivity observed are statistically significant.

In parallel, similar experiments were performed in conventional shake flasks comparing similar concentrations of pyruvate, MEM amino acids and Mn²⁺ as the 3D HT DataChip platform (Supporting information, Fig. S12). In agreement with the Chip platform, the shake flask data showed that there was no significant differences in cell growth due to addition of various concentrations of pyruvate, MEM amino acids, and Mn²⁺ to the base medium (Supporting information, Fig. S12). Metabolite analysis of the spent media from samples obtained from shake flask were conducted with BioProfile FLEX on cell-conditioned media from the shake flask experiments highlighted that the glutamate concentration used in the non-proprietary formulation was 20-fold lower than what is typical in the proprietary medium formulation (data not shown). Glutamate is an essential amino acid and is an important source for production of glutamine [18]. Therefore, the 3D HT DataChip platform was utilized to evaluate effect of glutamate on cell growth and metabolism, and further crosscheck with the conventional shake flask platform. In addition, it was also observed that due to technical errors, there might be variability in preparation of the non-proprietary medium (Table 1), for example minute changes in pH of initial base media influence cell growth and productivity and pH was adjusted at 7.0. Therefore, for all experiments, two 1 L flasks of base medium were prepared and sterilized at a time in parallel, that was kept in 4°C and used for experiments (within 2 months). In addition, our initial experiments showed that minute changes in the temperature, humidity and CO₂ levels of the incubator could impact our study. For consistency, all the experiments were performed in the same incubator, accommodating the shake flasks and 3D HT DataChips.

3.4 Glutamate addition and endogenous lactate consumption

The addition of 5 and 10 mM glutamate from the base condition of 0.3 mM led to a modest increase in cell growth in the 3D microarray DataChip platform (Fig. 3A, B). Metabolite analysis on cell-conditioned medium from the chip samples was performed using an YSI analyzer. Figure 3 demonstrates the effect of glutamate concentration on glucose consumption (Fig. 3C), lactate formation (Fig. 3E), and glutamate metabolism (Fig. 3G). The data is helpful in illustrating the adequate preparation of the medium as it concerns glucose and glutamate addition. The data also demonstrates that glucose is not depleted throughout the course of the 8-day experiment. An interesting increase in lactate concentration with increasing glutamate concentration was also observed.

The glutamate experiments were replicated in the shake flask platform (Fig. 3B). The base medium contained 0.3 mM glutamate. Addition of 5 and 10 mM glutamate demonstrated a modest increase in the cell growth in the CHO-A1 cells (Fig. 3B). Figure 3 demonstrates effect of glutamate concentration on glucose consumption (Fig. 3D), lactate formation (Fig. 3F), and glutamate metabolism (Fig. 3H) in the CHO-A1 cells. The trend of glucose consumption and glutamate concentrations in both DataChip (glucose, Fig. 3C, glutamate, Fig. 3G) and shake flasks (glucose, Fig. 3D, glutamate, Fig. 3G) was similar. The lactate production in the Datachip (Fig. 3E) and shake flask (Fig. 3F) were similar; however, a decline in lactate concentration on day 3–4 in shake flask suggested lactate consumption for the highest glutamate concentration (glutamate concentration 10.3 mM, Fig. 3F). Indeed, some difference in cellular bioprocesses, such as cell
growth and mAb expression, might be reasonably expected in the two platforms. One of key differences between the two platforms is the cell density (10-fold difference in initially seeding density), which is expected to lead to varying degrees of nutrient availability and metabolite accumulation.

Lactate production leads to decrease in cell growth and productivity [22, 24]. Lactate consumption by cells occurs under optimal conditions, resulting in a metabolic shift [21, 22]. We observe that the GS/MSX CHO cells grown in base medium supplemented with 10.3 mM glutamate exhibit a metabolic shift on day 3–4 when cultivated in shake flasks, resulting in lactate consumption. It has been shown that specific changes in metabolic pathways lead to this lactate metabolic shift [22, 25, 26]. A potential usage of the microarray DataChip platform would be screening of metabolic pathways through an in-chip immunofluorescence assays [27].

4 Concluding remarks

HT platforms have been a cost-efficient and rapid screening method for evaluating cell-culture additives, including, screening of novel drugs and toxic chemicals in cell culture systems [4, 9, 10, 27]. The current study demonstrates that the DataChip platform has the potential to be utilized for evaluating impact of media additives, on cellular processes, such as, cell growth, metabolism, and productivity. A more detailed metabolic flux analysis, as well as up/down regulation of key signaling pathways using the in-cell immunofluorescence assay developed for the
chip, could also be performed [4]. Future work, directed towards the glycosylation profiles of the glycoproteins produced on chip, must be compared and analyzed to shake flask cultures. Analyses of N-glycans released by PNGaseF from glycoproteins secreted into the 250 µL should be well within the sensitivity possible using LC-MS analysis (Supporting information, Fig. S2). Other experiments could involve factorial design of media additives for studying component interaction.

This work was supported by a grant from Janssen Biotech, Inc. and by grants from the National Institutes of Health #GM38060 (R.J.L.), ES020903 (J.S.D.) and GM090127 (S.T.S.) and the National Science Foundation (CBET-0967821, S.T.S.). Nicole Migliore and Eugene Schaefer are employees of Janssen. The remaining authors have no individual consulting agreements with Janssen and have performed this research under a grant from Janssen.

The authors declare no conflict of interest.

5 References


© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
This “regular” issue of Biotechnology Journal gathers the state-of-the-art in biotechnology, including articles on CHO cells, plant biotechnology and tissue engineering. The cover image shows immunohistochemical staining of tissue sections using antibodies recognizing different target proteins (www.proteinatlas.org) and is provided by Sophia Hober et al., authors of “Antibody performance in western blot applications is context-dependent” (http://dx.doi.org/10.1002/biot.201300341).


Editorial: Biotechnology Journal's diverse coverage of biotechnology
Michael Wink
http://dx.doi.org/10.1002/biot.201400056

Review
Synthetic biology of avermectin for production improvement and structure diversification
Ying Zhuo, Tao Zhang, Qi Wang, Pablo Cruz-Morales, Buchang Zhang, Mei Liu, Francisco Barona-Gómez and Lixin Zhang
http://dx.doi.org/10.1002/biot.201200383

Review
Natural products – learning chemistry from plants
Agata Staniek, Harro Bouwmeester, Paul D. Fraser, Oliver Kayser, Stefan Martens, Alain Tissier, Sander van der Krol, Ludger Wessjohann and Heribert Warzecha
http://dx.doi.org/10.1002/biot.201300059

Review
Engineering the extracellular matrix for clinical applications: Endoderm, mesoderm, and ectoderm
Miguel L. Williams and Sujata K. Bhatia
http://dx.doi.org/10.1002/biot.201300120

Rapid Communication
A rapid flow cytometry assay for the relative quantification of protein encapsulation into bacterial microcompartments
Edward Y. Kim and Danielle Tullman-Ercek
http://dx.doi.org/10.1002/biot.201300391

Rapid Communication
split-Cre recombinase effectively monitors protein-protein interactions in living bacteria
Sean P. O’Brien and Matthew P. DeLisa
http://dx.doi.org/10.1002/biot.201300462

Research Article
Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass
Ning Zhao, Yun Bai, Chen-Guang Liu, Xin-Qing Zhao, Jian-Peng Xu and Peng-Wu Bai
http://dx.doi.org/10.1002/biot.201300367

Research Article
Flux response of glycolysis and storage metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic 13C labeling
Lodewijk de Jonge, Nicolaas A. A. Buijs, Joseph J. Heijnen, Walter M. van Golik, Alessandro Abate and S. Aljoscha Wahl
http://dx.doi.org/10.1002/biot.201300260

Research Article
Microarray platform affords improved product analysis in mammalian cell growth studies
http://dx.doi.org/10.1002/biot.201300288

Research Article
CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors
Noelia Sanchez, Paul Kelly, Clair Gallagher, Nga T. Lao, Colin Clarke, Martin Clynes and Niall Barron
http://dx.doi.org/10.1002/biot.201300325

Research Article
Egg- or cell culture-derived hemagglutinin mutations impair virus stability and antigen content of inactivated influenza vaccines
Sabine Nakowitsch, Andrea M. Waltenberger, Nina Wressnigg, Nicole Perstl, Andrea Friendl, Bettina Kiefmann, Emanuele Montomoli, Giulia Lapini, Maria Sergeeva, Thomas Muster and Julia R. Romanova
http://dx.doi.org/10.1002/biot.201300225

Research Article
Scale-down models to optimize a filter train for the downstream purification of recombinant pharmaceutical proteins produced in tobacco leaves
Johannes F. Bayel and Rainer Fischer
http://dx.doi.org/10.1002/biot.201300369

Research Article
Aqueous biphasic cancer cell migration assay enables robust, high-throughput screening of anti-cancer compounds
Stephanie Lemo, Samila Nasrollahi and Hossein Tavana
http://dx.doi.org/10.1002/biot.201300227

Research Article
Antibody performance in western blot applications is context-dependent
Cajsa Älgenäs, Charlotta Agaton, Linn Fagerberg, Anna Asplund, Lisa Björling, Erik Björling, Caroline Kampf, Emma Lundberg, Peter Nilsson, Anja Persson, Kenneth Wester, Fredrik Pontén, Henrik Wernérus, Mathias Uhlén, Jenny Ottosson Takanen and Sophia Hober
http://dx.doi.org/10.1002/biot.201300341

Research Article
Lipid bilayer arrays: Cyclically formed and measured
Bin Lu, Gayane Kocharyan and Jacob J. Schmidt
http://dx.doi.org/10.1002/biot.201300271