Abstract
Isolavonoids are a class of plant natural products gaining attention due to their pharmaceutical properties. These natural compounds constitute a subclass of flavonoids, which belong to a broader class of plant products known as phenylpropanoids.
Flavonoids have been associated with medicinal properties, while isoflavonoids have shown anticancer, antioxidant, and cardioprotective properties due to their role as inhibitors of estrogen receptors. Isoflavonoids are naturally produced by legumes and, more specifically, organisms belonging to the pea family. Harvesting of these natural products through traditional extraction processes is limited due to the low levels of these phytochemicals in plants, so alternative production platforms are required to reduce cost of production and increase availability. Over the last decade, researchers have engineered artificial flavonoid biosynthesis pathways into Escherichia coli and Saccharomyces cerevisiae to convert simple, renewable sugars like glucose into flavonoids at high production levels. This chapter outlines the metabolic engineering research that has enabled microbial production of plant flavonoids and further details the ongoing work aimed at producing both natural and non-natural isoflavonoids in microorganisms.

Keywords
Metabolic engineering • mutasynthesis • non-natural isoflavonoids • protein engineering • strain improvement

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GT</td>
<td>3-O-glucosyltransferase</td>
</tr>
<tr>
<td>4CL</td>
<td>4-Coumarate-CoA ligase</td>
</tr>
<tr>
<td>ACC</td>
<td>Acetyl-CoA carboxylase</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>ANR</td>
<td>Anthocyanidin reductase</td>
</tr>
<tr>
<td>ANS</td>
<td>Anthocyanidin synthase</td>
</tr>
<tr>
<td>API</td>
<td>Active pharmaceutical ingredient</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>BDO</td>
<td>Biphenyl dioxygenase</td>
</tr>
<tr>
<td>BMC</td>
<td>Bacterial microcompartment</td>
</tr>
<tr>
<td>C4H</td>
<td>Cinnamate 4-hydroxylase</td>
</tr>
<tr>
<td>CHI</td>
<td>Chalcone isomerase</td>
</tr>
<tr>
<td>CHS</td>
<td>Chalcone synthase</td>
</tr>
<tr>
<td>CPR</td>
<td>Cytochrome P450 reductase</td>
</tr>
<tr>
<td>CUS</td>
<td>Curcuminoid synthase</td>
</tr>
<tr>
<td>DFR</td>
<td>Dihydroflavonol reductase</td>
</tr>
<tr>
<td>DH</td>
<td>Salmonella typhimurium LT2 TDP-glucose 4,6-dehydratase</td>
</tr>
<tr>
<td>EPI</td>
<td>Streptomyces antibioticus Tu99 TDP-4-keto-6-deoxyglucose 3,5-epimerase</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>F7GAT</td>
<td>Flavonoid 7-O-glucuronosyltransferase</td>
</tr>
<tr>
<td>FHT</td>
<td>Flavanone 3β-hydroxylase</td>
</tr>
<tr>
<td>FLS</td>
<td>Flavonol synthase</td>
</tr>
</tbody>
</table>
FSI Soluble flavone synthase
FSII Membrane-bound flavone synthase
G1P Glucose-1-phosphate
G6P Glucose-6-phosphate
GALU Glucose-1-phosphate uridylyltransferase
GERF Streptomyces sp. KCTC 0041BP TDP-hexose 3-epimerase
GERK Streptomyces sp. KCTC 0041BP TDP-4-keto-6-deoxyglucose reductase
Glu Glutamic acid
Gly Glycine
HEK Human embryonic kidney cells
hER Human estrogen receptor
HI4'OMT 2,7,4'-Trihydroxyisoflavanone 4'-O-methyltransferase
HID 2-Hydroxyisoflavanone dehydratase
HIDH 2-Hydroxyisoflavanone dehydratase hydroxy type
HIDM 2-Hydroxyisoflavanone dehydratase methoxy type
IFR Isoflavone reductase
IFS Isoflavone synthase
Ile Isoleucine
k_{cat} Turnover number
K_m Michaelis constant
KR Streptomyces antibioticus Tu99 TDP-glucose 4-ketoreductase
LAR Leucoanthocyanidin reductase
LB Luria-Bertani medium
LDOX Leucoanthocyanidin dioxygenase
NADPH Nicotinamide adenine dinucleotide phosphate
NDK Nucleoside diphosphate kinase
NDO Naphthalene dioxygenase
PAL Phenylalanine ammonia-lyase
PGI Glucose-6-phosphate dehydrogenase
PGM Phosphoglucomutase
Phe Phenylalanine
RCIFS Red clover isoflavone synthase
RCPR Rice cytochrome P450 reductase
SaOMT-2 Streptomyces avermitilis MA-4680 7-O-methyltransferase
ScCCL Streptomyces coelicolor A3 cinnamate/coumarate:CoA ligase
Ser Serine
SERM Selective estrogen receptor modulator
STS Stilbene synthase
TAL Tyrosine ammonia-lyase
TB Terrific broth
TDP Thymidylyltransferase
1 Metabolic Engineering

1.1 Background

Metabolic engineering involves the genetic manipulation of metabolism for a specific goal, often high-level production of a secondary metabolite. Secondary metabolites are those not critical to the survival of an organism in its normal environment, and they are thus typically found in far lower quantities than primary metabolites involved in energy maintenance and growth [1, 2]. As secondary metabolites have evolved to serve in important ecological roles – usually through interaction with other organisms – they possess unique properties and are thus the target of many metabolic engineering projects [3–5]. Although metabolic engineering has been a distinct discipline for over two decades, advancing technologies in areas such as DNA sequencing and synthesis, computational modeling and optimization, synthetic biology, and protein engineering are enabling metabolic engineers to create economically viable microbial production platforms for specialty chemicals like pharmaceuticals and biofuels [6].

Throughout the past decade, much work has focused on both plant and microbial metabolic engineering for production of pharmaceutically and nutraceutically important plant isoflavonoids [7–11]. This class of phytochemicals has been shown to possess a diverse array of pharmacological activities and demonstrates potential for treatment of certain cancers, cardiovascular diseases, and other conditions [12–17]. In particular, isoflavonoids have high affinity toward human estrogen receptors (hERs) and are therefore being investigated as estrogen receptor agonists and antagonists to modulate estrogen metabolism [18–20]. The relatively low abundance of these valuable compounds in plants makes microbial metabolic engineering an excellent alternative candidate for large-scale isoflavonoid production.
1.2 Metabolic Engineering Products

The majority of work in the field of metabolic engineering has focused on the production of commodity chemicals and biofuels from renewable, simple carbon sources such as glucose and glycerol, or the production of pharmaceutical chemicals and proteins [21–24]. In general, metabolic engineering can be viewed as the process by which scientists combine genes from different sources to construct a biosynthetic pathway in a host organism to convert an inexpensive feedstock into a valuable product. Classic metabolic engineering projects range from the microbial production of biofuels like ethanol and butanol to the production of commodity chemicals like xylitol. Although these efforts are important for ensuring long-term stability of commodity supply from renewable resources, microbial metabolic engineering of valuable plant natural products and other active pharmaceutical ingredients (APIs) with high overhead has the potential to make a much greater impact on society by lowering cost and ensuring availability and widespread access to medically important compounds [6].

1.3 Microorganisms as a Production Platform for Plant Natural Products

1.3.1 Advantages of Microbial Hosts

Microorganisms serve as excellent hosts for production of phytochemicals. The relatively lower genetic complexity of microbes compared to multicellular eukaryotes allows for more accurate prediction of the effects of genetic manipulations in microbes than in plants. Modulation of gene copy or expression level typically leads to an imbalance in reaction fluxes and, subsequently, the accumulation of pathway intermediates. If a genetic pathway is not decoupled from its native environment, accumulation of intermediates can become toxic or elicit unintended regulatory effects like feedback inhibition. Such uncharacterized genetic interactions in multicellular eukaryotic hosts are currently difficult to predict and can be largely avoided by transplanting genes from evolutionarily distinct organisms into an artificial pathway in a microbial host [25].

Perhaps the strongest argument for utilizing microorganisms for metabolic engineering of plant natural products is the high degree of genetic tractability that currently exists for microbial workhorses like *Escherichia coli*, *Saccharomyces cerevisiae*, and *Bacillus subtilis*. Thanks to decades of research, these hosts have innumerable data sets and molecular biology tools available for facile genetic manipulation, characterization, modeling, and scale-up. This genetic tractability reduces experimental unknowns and allows for faster, more predictable experimentation and data collection. Additionally, the high growth rates and simple media requirements associated with microorganisms enable culturing with limited resources [25, 26].
Alternative Production Platforms

Plant natural products have traditionally been harvested through extraction methods, as evidenced by the preparation of traditional medicines and the steeping of tea leaves and coffee beans for millenia. Since plant natural products are generally found at low levels in plant biomass, extraction is usually not a sustainable mass production avenue. Although extraction is still utilized to harvest APIs like the antimalarial drug artemisinin (from Artemisia annua, known as Sweet Wormwood) and the chemotherapeutic paclitaxel (from Taxus brevifolia, the Pacific yew tree) when chemical synthesis is difficult or expensive, there is a trend and growing necessity to shift toward alternative production platforms to lower cost and increase availability [27, 28].

Alternative production platforms include organic synthesis, plant cell culture, plant tissue culture, and even mammalian cell culture. The field of organic synthesis of complex plant natural products has advanced significantly but is limited as an industrial-scale flavonoid production platform by frequent use of toxic chemicals and extreme reaction conditions, a high number of required steps, exorbitant costs, relatively low overall yields, and nonspecific catalysts leading to by-products and often difficult-to-separate racemic mixtures of target compounds [29–35]. Semisynthesis, which combines organic synthesis steps with biosynthetic steps, is also limited by similar challenges. It is then reasonable to consider plant cell and tissue culture as a closely related alternative production platform since the metabolites of interest are endogenously produced in undifferentiated plant cells [36].

A well-known example of industrial-scale production in plant cell lines is the induction of paclitaxel production through methyl jasmonate elicitation, yielding 0.5 % of dry weight compared to 0.01 % of dry weight by extraction from the Pacific yew [37, 38]. By contrast, chemical synthesis of paclitaxel requires 35–51 steps, with a yield of only 0.4 % [39]. Plant tissue culture is another option, as many secondary metabolic biosynthetic pathways are only active in specific stages of development or in certain tissues [40, 41]. Thus, elicitation of differentiated plant cell tissues by small molecules or light can also be utilized to produce secondary metabolites. Despite progress in plant cell and tissue culture, the elucidation and characterization of all enzymes involved in plant secondary metabolite biosynthetic pathways are still challenging tasks; moreover, the difficulty in unequivocally discerning all sensitive, multilevel regulatory effects instigated by minimal variations in metabolite concentrations often makes the outcome of metabolic engineering in plant cell and tissue cultures unpredictable.

With advances in metabolic engineering of mammalian cells, it is foreseeable that plant natural products might one day be produced and derivatized using mammalian cell culture to take advantage of mammal-specific biotransformations and glycosylation patterns leading to improved pharmaceutical properties and applications. Therapeutic phytochemical production pathways might even be engineered into specific tissues to enable in situ biosynthesis for disease treatment or prophylaxis. To date this alternative remains relatively unexplored; however, engineering of a resveratrol artificial biosynthetic pathway into human embryonic kidney cells (HEK293) circumvented purported difficulties
associated with yeast expression of tyrosine ammonia-lyase (TAL) and highlighted the opportunity to move plant pathways into mammalian cells for in situ production of phytochemical therapeutics in human tissue [42]. Just as predictable metabolic engineering of plant cell and tissue cultures is currently limited by cellular complexity, metabolic engineering of mammalian cells can be encumbered with the same difficulties.

2 Plant Phenylpropanoid Biosynthesis

2.1 Background

Isoflavonoids belong to a broad class of compounds known as phenolics. Any chemical containing one or more phenol group can be classified as a phenolic compound, although the plant phenolics with the most biotechnological relevance are flavonoids and other phenylpropanoids. Phenylpropanoids are secondary plant metabolites that are considered to be beneficial for human health [43]. In particular, a subclass of phenylpropanoids known as flavonoids is typified by bioactive compounds with antioxidant, antiviral and antibacterial, anticancer, antiobesity, and estrogenic properties [9]. The microbial production of flavonoids has attracted much attention due to the prospect of utilizing flavonoids for personal health applications [44]. Flavonoids are currently used as dietary supplements and are the subject of intense investigation as pharmacetical precursors to treat chronic human pathological conditions like cancer and diabetes [45–51]. Anthocyanins 17, another class of flavonoids, possess brilliant natural colors and are potential replacements for artificial dyes that have adverse health effects. The antioxidant properties of these glycosylated flavonoids may have a positive health influence and make anthocyanins 17 well suited as natural colorants for the food and beverage industry [52–54]. Anthocyanins 17 are good targets for metabolic engineering since glycosylations remain a challenge from a chemical synthesis perspective. Furthermore, plant extraction of phenolics seldom yields greater than 1% of the dry weight. Metabolic engineering of flavonoid biosynthesis has already gained traction due to the long-standing interest in phenolic compounds and the corresponding detailed characterization of related genetic pathways and enzymes [43].

As a general classification, phenolics do not contain nitrogen and may contain multiple hydroxyl groups as well as heteroatom substituent groups. Phenolics with greater than 12 phenolic groups are generally considered as polyphenols, lignins, or tannins. Flavonoids are the most well characterized and largest class of natural phenolics, and they are biosynthesized from the aromatic amino acid phenylalanine 2 through the common precursor, chalcone 11. Further classification draws a distinction between five types of flavonoids that are derived from the common flavanone 12 precursor: flavones 14, flavonols 15, isoflavones 13, flavanols, and anthocyanins 17 [55]. Flavonoids are composed of a C₆-C₃-C₆ skeleton that serves as a 15-carbon phenylpropanoid core 1 for
downstream decorations such as methylations, hydroxylations, reductions, oxidations, glycosylations, acylations, methoxylations, alkylation, and various rearrangements [44, 56–58]. The flavonoid core 1 consists of 3 rings, labeled A, B, and C.

Other phenylpropanoids, so named due to their common phenylalanine 2 precursor, include hydroxycinnamic acids, cinnamic aldehydes and monolignols, coumarins, and stilbenoids 8.

2.2 Plant Phenylpropanoid Biosynthetic Pathway

Phenylpropanoid biosynthesis is initiated by the conversion of phenylalanine 2 to cinnamic acid 5 as catalyzed by phenylalanine ammonia-lyase (PAL). Cinnamic acid 5 is then converted to flavanone 12 through a series of subsequent enzymatic reactions involving the following steps: the hydroxylation of cinnamic acid 5 to \(p \)-coumaric acid 6 through cinnamate 4-hydroxylase (C4H); the ligation of \(p \)-coumaric acid 6 to a CoA group using 4-coumarate-CoA ligase (4CL); the sequential decarboxylative condensation of three acetate units from malonyl-CoA 10 to 4-coumaroyl-CoA 19 by chalcone synthase (CHS), a type III polyketide synthase, to form chalcone 11 in a ring closing step; and the stereospecific isomerization of chalcone 11 to flavanone 12 catalyzed by chalcone isomerase (CHI). Downstream enzymes then catalyze the conversion of flavanones 12 into compounds belonging to the various flavonoid subclasses.

Type III polyketide synthases are particularly relevant to this chapter because they catalyze the formation of phenolic compounds. This group of polyketide synthases consists of CHSs, stilbene synthase (STS), and curcinomoid synthase (CUS), which perform decarboxylative condensations between a starter unit, either \(p \)-coumaroyl-CoA 19 or cinnamoyl-CoA 18, and an extender unit, malonyl-CoA 10. CHS, STS, and CUS convert the substrate molecules into flavonoids (C_{6-C3-C6}), stilbenoids 8 (C_{6-C2-C6}), and curcuminoids 9 (C_{6-C7-C6}), respectively [59]. Stilbenoids 8 and curcuminoids 9 are out of the scope of this chapter but possess medicinal properties as well; resveratrol is a well-known stilbenoid 8 associated with longevity, and curcumin is a common curcuminoid 9 that is responsible for the yellow color in turmeric and can be utilized as a natural pigment possessing antioxidant and anti-inflammatory properties [60–63]. For an in-depth treatment of plant polyketide production in microbes, the reader is directed to a recent comprehensive review by Boghigian et al. [64].
2.3 Plant Flavonoid Pathways

Plant flavanones 12 are enzymatically converted to five major subclasses of flavonoids. Flavanones 12 are oxidized to flavones 14 by the action of either a soluble flavone synthase (FSI) or, as in most cases, a membrane-bound cytochrome P450 monooxygenase flavone synthase (FSII) [65]. Flavone synthases belong to the oxidoreductase family of enzymes and effectively remove the stereocenter from flavanones 12 by oxidation of C3 and introduction of a double bond between C2 and C3. Apigenin, luteolin, and chrysin are common flavones 14 that contribute to human diet as glycosides and are found in large quantities in parsley and celery [66–68].

Alternatively, isoflavone synthase (IFS) catalyzes the 1,2-aryl ring B migration from C2 to C3 on ring C of the phenylpropanoid core 1 and the hydroxylation of C2, converting flavanones 12 to 2-hydroxyisoflavonones [69, 70]. Dehydration of 2-hydroxyisoflavonones into isoflavones 13 occurs spontaneously through the 1,2-elimination of water, but accelerated dehydration is catalyzed by one of two hydro-lyases known as 2-hydroxyisoflavone dehydratases (HID hydroxy type, HIDH; HID methoxy type, HIDM), depending upon the occurrence of an intermediate 4′-O-methylation catalyzed by 2,7,4′-trihydroxyisoflavonone 4′-O-methyltransferase (HI4′OMT) [71]. Isoflavonoids are characterized by a 3-phenylchroman skeleton, in contrast to the 2-phenylchroman core 1 possessed by flavonoids, and are incredibly diverse in structure despite being limited to natural existence primarily in leguminous plants [72]. Soy beans and soy bean food products contain high concentrations of isoflavone 13 glycosides such as genistin 31 and daidzin 30 and relatively lower quantities of their respective aglycones, daidzein 27 and genistein 26 [74]. Isoflavonones 13 are classified as phytoestrogens because of the structural similarity shared with estrogens, and they are among the most highly studied polyphenols due to their affinities for steroid receptors and demonstrated pharmacological properties [18–20, 74]. These characteristics make isoflavonones 13 important metabolic engineering targets.

Flavanones 12 also serve as the substrate for flavanone 3β-hydroxylase (FHT), which catalyzes the hydroxylation of C3 on the flavanone core 1 into dihydroflavonol 16, the common precursor to both flavonols 15 and anthocyanins 17. Dihydroflavonols 16 are subsequently converted to flavonols 15 by reduction of C2 by the oxidoreductase enzyme flavonol synthase (FLS), again removing the stereocenter and introducing a double bond between C2 and C3 [75]. Flavonols 15 such as kaempferol and quercetin exist primarily as glycosides at appreciable levels in onions and kale [67, 68].

Initiating another branch of the flavonoid pathway, C4 of dihydroflavonol 16 can be reduced from a carbonyl group to a hydroxyl group by the oxidoreductase enzyme dihydroflavonol reductase (DFR), producing leucoanthocyanidins, or the colorless precursors to anthocyanins 17. Leucoanthocyanidins are unstable and are quickly converted to anthocyanidins by anthocyanidin
synthase (ANS), synonymously leucoanthocyanidin dioxygenase (LDOX), working jointly with DFR [76]. Anthocyanins and leucoanthocyanidins can alternatively be reduced to their corresponding flavan-3-ols (proanthocyanidins, or condensed tannins) by anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR), respectively. A flavonoid glycosyltransferase then adds a sugar to the anthocyanidin, enabling pigment storage in the form of stable anthocyanins [77]. Many brilliant red, blue, and purple plant hues arise from anthocyanin-mediated coloration. Figure 54.1 illustrates the alternative pathways for biosynthesis of various plant phenylpropanoid and flavonoid subclasses.

![Flavonoid biosynthetic pathways](image)

Fig. 54.1 Plant phenylpropanoid and flavonoid biosynthetic pathways; representative compounds from each subclass are named.

<table>
<thead>
<tr>
<th>Flavonoid subclass</th>
<th>Phenylalanine (2) precursor</th>
<th>Tyrosine (3) precursor</th>
<th>Caffeic Acid (4) precursor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavanones (12)</td>
<td>(2S)-pinocembrin (22)</td>
<td>(2S)-naringenin (23)</td>
<td>(2S)-eriodictyol</td>
</tr>
<tr>
<td>Isoflavones (13)</td>
<td>5,7-dihydroxyisoflavone</td>
<td>Genistein (26)</td>
<td>Orobol</td>
</tr>
<tr>
<td>Flavones (14)</td>
<td>Apigenin</td>
<td>Luteolin</td>
<td>Chrysin</td>
</tr>
<tr>
<td>Flavonols (15)</td>
<td>Kaempferol</td>
<td>Quercetin</td>
<td>Myrecetin</td>
</tr>
<tr>
<td>Anthocyanin 3-O-glucosides (17)</td>
<td>Paliarogondin 3-O-glucoside</td>
<td>Cyanidin 3-O-glucoside</td>
<td>Delphinidin 3-O-glucoside</td>
</tr>
<tr>
<td>Stilbenoids (8)</td>
<td>Pinosylvin</td>
<td>Resveratrol</td>
<td>Piceatannol</td>
</tr>
<tr>
<td>Curcuminoids (9)</td>
<td>Dicinnamoylmethane</td>
<td>Bisdemethoxycurcumin</td>
<td>Curcumin</td>
</tr>
</tbody>
</table>

Legend:
- PAL – phenylalanine ammonia lyase
- TAL – tyrosine ammonia lyase
- C4H – cinnamate 4-hydroxylase
- 4CL – 4-coumarate-CoA ligase
- STS – stilbene synthase
- CUS – curcuminoid synthase
- CHS – chalcone synthase
- CHI – chalcone isomerase
- IFS – isoflavone synthase
- FSI – soluble flavone synthase
- FSI – membrane-bound flavone synthase
- FHT – flavanone 3β-hydroxylase
- FLS – flavonol synthase
- DFR – dihydroflavonol reductase
- LAR – leucoanthocyanidin reductase
- 3GT – 3-O-glucosyltransferase

Central flavanone biosynthetic pathway
Plant Isoflavonoid Production in Microbes

3.1 Construction of an Artificial Biosynthetic Pathway for Flavonoid Production in Microbes

The first construction of an artificial plant flavonoid biosynthetic pathway in microbes involved the transformation of *E. coli* with four heterologous genes. These genes are required for the synthesis of flavanones 12 from phenylalanine 2 and tyrosine 3 (through a promiscuous PAL having the ability to accept both phenylalanine 2 and tyrosine 3 as substrates) [78–80]. This exercise provided a platform for the microbial biosynthesis of a plethora of natural and non-natural flavanone 12 derivatives. It should also be noted here that bacterial TAL catalyzes the conversion of tyrosine 3 to *p*-coumaric acid 6 in one step and can replace the two-step conversion of phenylalanine 2 to *p*-coumaric acid 6 by PAL and C4H in an artificial biosynthetic pathway if so desired [81]. Also, depending upon choice of aromatic amino acid precursor, two parallel biosynthetic paths exist for phenylalanine-based flavonoids in contrast to tyrosine-based flavonoids; other common natural and non-natural aromatic acrylic acids like caffeic acid 4 serve as substrates for 4CL in plants and microbes [82, 83]. The substrate flexibility of all enzymes involved allows for perpetuation of extra hydroxyl side groups throughout the entire pathway, affording flavanones 12 or other flavonoids with divergent hydroxylations. Another key distinction to note while reading this section is whether the project being described utilizes an entirely fermentative process to produce complex compounds from primary microbial metabolites or whether the project takes advantage of intermediate chemical supplementation. Although neither approach is absolutely superior to the other, distinctions can be drawn between them.

For instance, a fermentative approach often suffers from low production due to pathway complexity and increased number of steps, but it allows for production of complex compounds such as phytochemicals from simple, renewable carbon compounds like glucose. Conversely, intermediate supplementation is often utilized to simplify pathway construction and is associated with higher product yields. Although supplementing a microbial culture with an expensive precursor might be feasible for a small-scale experiment, it severely hinders industrial applicability. However, if an inexpensive, readily available intermediate can be utilized as a precursor, an entirely fermentative process with lower titers might not be justifiable. A metabolic engineer must then weigh the impact of generating a complex product entirely from primary metabolites versus the value associated with significantly higher production levels. As will be seen throughout this chapter, research efforts are often initiated with intermediate supplementation in order to limit confounding variables, and full fermentative pathways are constructed after significant breakthroughs are achieved and once distinct metabolic pathways can be connected in vivo.

The experiment described in the beginning of this section involved the incorporation of four heterologous genes: *S. cerevisiae* PAL, *Streptomyces coelicolor* A3 cinnamate/coumarate:CoA ligase (ScCCL) with substrate specificity toward both cinnamic acid 5 and *p*-coumaric acid 6, licorice plant (*Glycyrrhiza echinata*) CHS,
and *Pueraria lobata* CHI. Transformation of *E. coli* with a plasmid harboring these four heterologous genes coupled with overexpression of the *Corynebacterium glutamicum* gene encoding two acetyl-CoA carboxylase subunits, accBC and dtsR1, produced ~60 mg L\(^{-1}\) of the flavanones 12 (2\(S\))-naringenin 23 and (2\(S\))-pinocembrin 22. The artificial biosynthetic pathway constructed for plant flavanone 12 biosynthesis in microbes is shown in Fig. 54.2. Acetyl-CoA carboxylase (ACC) was selected for overexpression to increase the intracellular pool of malonyl-CoA 10, which is required for synthesis of flavanones 12 from either 4-coumaroyl-CoA 19 or cinnamoyl-CoA 18. Further introduction of FSI from *Petroselinum crispum*, FHT from *Citrus sinensis*, and FLS from *Citrus unshiu* produced the flavones 14 apigenin and chrysin, as well as the flavonols 15 kaempferol and galangin in low concentrations [80, 84]. This seminal work has enabled the production in *E. coli* and *S. cerevisiae* of many valuable phenylpropanoid compounds, including natural and non-natural flavones 14, flavonols 15, anthocyanins 17, stilbenoids 8, and curcuminoids 9 [42, 60, 65, 82, 84–107]. As this chapter focuses on isoflavonoids, however, the reader is directed to a detailed review of microbial biosynthesis of other valuable plant phenylpropanoids by Limem et al. [43].

3.2 Engineering the Plant Isoflavonoid Pathway in Microbes

3.2.1 Production of Isoflavonoid Aglycones in Microbes

The successful construction of an artificial plant flavonoid biosynthetic pathway in microbes, combined with the first report of functional activity of IFS in yeast microsomes by Akashi and coworkers in 1999, paved the way for high-level isoflavonoid production [69]. However, a significant barrier to prokaryotic
expression of IFS hampered progress and precluded taking advantage of the high growth rate of *E. coli* and the abundance of molecular biology tools available for the microbe. IFS is a membrane-bound cytochrome P450 that requires an electron transfer system that is not present in bacterial cells; thus, coexpression of functional IFS with the flavanone 12 pathway in recombinant *E. coli* required creative engineering solutions. Eukaryotic microbes like *S. cerevisiae* and other unicellular fungi possess the requisite machinery for cytochrome P450 enzyme expression; specifically, they constitutively express an endogenous cytochrome P450 reductase (CPR) that is an integral redox partner for IFS and other cytochrome P450s, and they possess an endoplasmic reticulum (ER) on which the N-terminal signal-anchor peptide sequences of cytochrome P450 enzymes can bind [108, 109].

Katsuyama et al. overcame this impediment by coculturing a flavanone-producing *E. coli* strain with recombinant *S. cerevisiae* transformed with a T7-inducible plasmid harboring IFS from *G. echinata*. To demonstrate the production of the isoflavone 13 genistein 26 and the feasibility of coincubation, the yeast strain was first transformed with a pESC vector containing the genes CHS from *G. echinata*, CHI from *P. lobata*, and IFS from *G. echinata*, all under the control of galactose-inducible GAL promoters. Growth under supplementation with the precursor, *N*-acetylcysteamine-attached *p*-coumarate (*p*-coumaroyl-NAC), yielded ~342 μg L⁻¹ genistein 26. To examine the possibility of production without precursor feeding, a naringenin-producing *E. coli* strain (57 mg L⁻¹ of (25)-naringenin 23) was constructed as described in the previous section and cocultured with a recombinant yeast strain transformed with a vector containing *G. echinata* IFS under control of a galactose-inducible GAL promoter [80]. Simultaneous incubation of equal weights of engineered *E. coli* and *S. cerevisiae*, in addition to supplementation of the coculture media with 3 mM tyrosine 3 as a substrate for *E. coli*, yielded ~6 mg L⁻¹ of genistein 26 [110]. This “one-pot synthesis” scheme for production of genistein 26 from tyrosine 3 represented the most valuable microbial isoflavonoid production platform at the time of its publication. Optimization of coculture conditions subsequently improved genistein 26 production up to 100 mg L⁻¹ [111].

In order to produce isoflavonoids in a model plant, a native flavonoid pathway must be hijacked by diverting a common precursor away from its natural product and toward the desired isoflavonoid product. Tian and colleagues accomplished production of genistein 26 in the nonleguminous, model plant tobacco through protein engineering of a fusion between IFS and CHI [112]. The spatial proximity between CHI and IFS was engineered to increase the local concentration of the IFS substrate, naringenin 23, such that the production of nonnative genistein 26 was favored over the dominant, endogenous pink anthocyanin 17 accumulation pathway. Localization of the protein chimera at the ER was maintained by constructing the fusion with IFS at the N-terminus so its innate, hydrophobic N-terminal membrane anchor was free to target the ER as usual [87, 113]. A flexible linker peptide composed of glycine-serine-glycine (Gly-Ser-Gly) residues connected the C-terminus of IFS with the N-terminus of CHI to ensure proper folding of the two independent catalytic domains. Expression of this engineered protein fusion in transgenic tobacco successfully shifted flavonoid
accumulation toward isoflavonoids and enabled production of isoflavonoids in nonleguminous plants. Yeast expression of the protein fusion under precursor supplementation conditions also produced isoflavonoids and highlighted the possibility to utilize protein engineering to improve plant natural product titers in microbes [112].

Although *E. coli* and *S. cerevisiae* have both been utilized as model organisms for plant flavonoid production, it is often beneficial to express entire biosynthetic pathways in a single organism to avoid bidirectional metabolite transport limitations through the cell walls of two organisms simultaneously and to obviate media optimization for two different species at once. Functional expression of IFS in *E. coli* would eliminate the necessity for coculture with yeast. As such, Leonard and colleagues designed and expressed a set of artificial P450 enzymes that enabled robust biosynthesis of the isoflavones 13 genistein 26 and daidzein 27 from the flavanones 12 naringenin 23 and liquiritigenin in *E. coli* for the first time [114]. Two challenges to functional prokaryotic expression of eukaryotic cytochrome P450 enzymes were overcome in this research: the translational fusion of *Catharanthus roseus* CPR to *Glycine max* IFS spatially organized the redox partners for efficient electron shuttling from nicotinamide adenine dinucleotide phosphate (NADPH) to substrate, and rational design of several IFS N-terminal membrane signal sequences modulated activity of the protein fusion, enabling selection of a high-level isoflavone 13 producing chimera [114].

The protein engineering effort began with deletion of 71N-terminal amino acids from CPR to minimize membrane association without hindering catalytic activity. A glycine-serine-threonine (Gly-Ser-Thr) linker sequence was then designed to connect the CPR N-terminus with the IFS C-terminus while thwarting any secondary structure formation that could lead to incorrect folding of the two domains. The protein fusion was then truncated by a varying number of residues from the N-terminus of IFS, and two peptide leader sequences (one mammalian and one endogenous) were independently appended to these constructs in a semicombinatorial manner. Each chimera was separately expressed in *E. coli* and evaluated for production of isoflavone 13 from supplemented precursor. The most prominent fusion produced 10 and 18 mg g\(^{-1}\) (dry cell weight) of genistein 26 and daidzein 27, respectively, and consisted of the deletion of 6 membrane-anchor residues and the addition of an 8 residue mammalian leader sequence to the N-terminus of IFS. To determine a baseline production level, plant IFS and CPR were coexpressed in *E. coli* and found to yield negligible isoflavonoid concentrations compared to the engineered strain. *S. cerevisiae* coexpressing plant IFS and CPR produced isoflavones 13 at low concentrations approaching those of the poorly performing protein fusion constructs expressed in *E. coli*. After accounting for the significantly higher biomass of yeast versus *E. coli* in minimal media, the specific production level of isoflavones 13 in *E. coli* represented approximately 20-fold increase over yeast [114]. The methodology implemented in this work provides an approach for soluble expression of other eukaryotic membrane-bound cytochrome P450s in prokaryotes. Although not performed in this set of experiments, this research facilitated the impending construction of a complete artificial biosynthetic pathway from aromatic amino acids to isoflavonoids in a single microorganism.
A later report of functional expression of IFS in prokaryotes involved construction of a protein fusion between red clover IFS (RCIFS) and rice CPR (RCPR) in *E. coli* [115]. This work built upon previous results demonstrating that coexpression in yeast of IFS with CPR from rice can convert 100 μM naringenin 23 to 77 μM genistein 26, research predicated on the hypothesis that a plant CPR, as opposed to a constitutively expressed yeast CPR, would interact more efficiently with a plant IFS [103]. In this project RCIFS was truncated by deletion of the codons for the first 21 amino acids on the N-terminus, a sequence predicted to code for a helical region as indicated by computational secondary structure analysis. Changing the first remaining codon to a start codon (encoded by the nucleotide sequence ATG) enabled functional expression of RCIFS in *E. coli*, while removal of the IFS stop codon and addition of a Gly-Ser-Thr linker sequence followed by the RCPR coding sequence (also with the N-terminal membrane binding domain deleted) enabled expression and proper folding of the two fused domains. It should be noted here that this protein fusion design differs from that constructed previously by Leonard primarily because, in this case, the hydrophobic N-terminal membrane-associated domains were entirely removed from both enzyme constituents in the fusion to enhance solubility of the final construct. The functional expression and spatial proximity afforded by the soluble RCIFS-RCPR protein fusion enabled conversion of 80 μM naringenin 23 into 56 μM genistein 26 in *E. coli*. Difference in conversion between yeast and *E. coli* was not investigated but could be due to disparate expression and growth levels in the two distinct species. Again, it is likely that higher-efficiency electron transfer from NADPH to substrate occurred in *E. coli* due to the conjoined RCPR and RCIFS domains [115].

Coexpression in *S. cerevisiae* of all seven genes in the artificial isoflavone 13 pathway (PAL and CPR from a hybrid poplar, *Populus trichocarpa × Populus deltoides* and C4H, 4CL, CHS, CHI, and IFS from soybean, *G. max*), with phenylalanine 2 supplementation, was ultimately achieved by Trantas et al. and marked the first reported reconstitution of an entire isoflavonoid biosynthetic pathway in microbes. Although yeast contains a chromosomal copy of CPR, coexpression of a heterologous CPR from a the hybrid poplar increased *p*-coumaric acid 6 production fourfold, once again demonstrating the advantage of selecting a plant CPR to improve activity of the other enzymes in the cytochrome P450 metabolon [101, 116]. Only 0.1 mg L\(^{-1}\) genistein 26 was produced when the cultures were fed with phenylalanine 2 versus 7.7 mg L\(^{-1}\) when fed with naringenin 23, suggesting the presence of at least one limiting enzyme or that cellular metabolism was burdened by the genes upstream of naringenin 23. On average, the yeast strains in this work consumed 3.4 mmol L\(^{-1}\) phenylalanine 2, while the wild-type strain consumed 2.8 mmol L\(^{-1}\), a difference in phenylalanine 2 uptake of 0.8 mmol L\(^{-1}\) that can be attributed to flux through the heterologous flavonoid pathway. Stoichiometrically, this should lead to 0.8 mmol L\(^{-1}\) genistein 26, but production of only 0.4 μmol L\(^{-1}\) indicated approximately 0.05 % efficiency of conversion of phenylalanine 2 to genistein 26 through the artificial biosynthetic pathway. Measurement of some upstream intermediates showed 83 % flux efficiency through PAL and C4H, efficient
conversion through 4CL as deduced from the rapid depletion of p-coumaric acid 6, and approximately 8% efficiency to naringenin 23, which suggests that CHS or CHI are rate limiting but could not be confirmed due to the inability to quantify concentrations of the intermediate compounds 4-coumaroyl-CoA 19 and naringenin chalcone 21 [101]. As described by Akashi, coexpression of an HIDH in this engineered S. cerevisiae strain could potentially accelerate the spontaneous conversion of naringenin 23 to genistein 26 but was not attempted in this work [71].

The first attempt to coexpress HIDH with IFS and CPR confirmed this speculation. Chemler and coworkers coexpressed IFS, CPR, and HIDH from five various plant sources in yeast in a combinatorial fashion to determine the impact of gene source on individual enzyme activity and coupled enzyme activities [117]. IFS-encoding genes from G. max, Trifolium pratense, G. echinata, Pisum sativa, and Medicago truncatula were individually cloned into a pYES2.1 vector under control of the GAL1 promoter and transformed into S. cerevisiae strain INVSc1. After growth on minimal medium, the cultures were induced with galactose and supplemented with naringenin 23. Genistein 26 production was monitored, and T. pratense IFS was selected as the best enzyme because it showed significantly higher in vivo activity than the IFS enzymes from other sources. Since it had previously been shown that plant IFS activity in yeast is improved upon coexpression of plant CPR, the researchers coexpressed CPR from C. roseus and G. max with IFS from either G. max or T. pratense to determine the enzyme pair with highest coupled activity. Upon comparing genistein 26 production in these engineered strains to yeast expressing IFS with endogenous CPR, the strain coexpressing T. pratense IFS with G. max CPR was found to be the highest producer at 15 mg L\(^{-1}\) day\(^{-1}\). This illustrates the value in combining different gene sources to determine optimal protein pairing, particularly in the case of enzyme-mediated redox reactions. To assess whether expression of plant HIDH could increase genistein 26 production over its spontaneous generation from its 2-hydroxyisoflavanone precursor in yeast, coexpression of G. max or G. echinata HIDH was evaluated in the engineered strains. The best triple-enzyme combination was found to include T. pratense IFS, G. max CPR, and G. max HIDH, followed closely by the cognate combination of G. max IFS, CPR, and HIDH. Interestingly, T. pratense IFS holds some advantage over G. max IFS when coexpressed with G. max CPR and HIDH, despite presumption that the G. max enzymes evolved to work optimally together. Ultimately the three-enzyme combination showed greater than tenfold improvement in production rate over expression of IFS alone, but total production in all strains maximized at around 35 mg L\(^{-1}\) genistein 26. After further experimentation, it was shown that isoflavones 13 like genistein 26 and biochanin A 29 strongly inhibit conversion of naringenin 23 by IFS in yeast. It was speculated that isoflavone 13 glycosylations, methylations, and other enzymatic biotransformations might ameliorate product inhibition and increase overall isoflavonoid production [117]. The basic artificial biosynthetic pathway for plant isoflavone 13 production from flavanones 12 in microbes is illustrated in Fig. 54.3.
3.2.2 Production of Isoflavonoid Glycosides in Microbes

Many flavonoids and other secondary metabolites exist as glycosides in plants, and examples of engineered microbial glycosylation of various flavonoids like quercetin and anthocyanidins have been reported over the last decade [85, 96, 118, 119]. Glycosylation of flavonoid aglycones is important because it often increases mammalian bioavailability, solubility, and stability [68, 120–129]. In the first example of microbial isoflavonoid glycosylation, expression of UGT71G1, a uridine diphosphate glycosyltransferase (UGT) from the model legume *M. truncatula*, in heterologous *E. coli* with supplementation of genistein and biochanin A yielded mg quantities at greater than 70 % conversion to genistein and biochanin A 7-O-glucosides (genistin and sissotrin, respectively) after 24-h incubation (Fig. 54.4). Terrific broth (TB) culture medium supported higher growth than Luria-Bertani (LB) culture medium and thus provided 3.5-fold higher yield of 7-O-glucoside. Scale-up to 500 mL culture achieved conversion rates of 30–60 %, about 80 % efficient compared to small scale, yielding up to 20 mg L−1 of isoflavanone glycosides [98]. Of note, 90 % of the glycosylated products were secreted from the cell, enabling facile collection and suggesting that increased solubility or sugar moiety-related signaling affects efflux from the cell. As such, this work suggests that coexpression of *M. truncatula* UGT71G1 in Chemler’s engineered yeast strain (*T. pratense* IFS, *G. max* CPR, *G. max* HIDH) could convert naringenin to genistin, the genistein 7-O-glucoside, at much higher rates than previously reported because feedback inhibition would...
be minimized by the glycosylation and subsequent export from the cell. Whereas extraction of plant flavonoid glycosides is inefficient, and regioselective glycosylation of flavonoids through chemical synthesis methods requires intermittent blocking and deblocking of hydroxyl groups and yields only about 50% conversion due to the occurrence of nonspecific glycosylations, glycosylation through biotransformation offers a highly efficient and cheap alternative [130–133]. A major barrier to high-level microbial production of any flavonoid glycoside, however, is intracellular supply of uridine diphosphate (UDP) glucose.

As seen in Fig. 54.4, nucleotide-activated sugars are required as donors for glycosylation. In previous work, Yan and colleagues engineered a four-step metabolic pathway for plant anthocyanin biosynthesis in E. coli, which involved expression of four heterologous genes including Malus domestica FHT and ANS, Anthurium andraeanum DFR, and Petunia hybrida UDP-glucose:flavonoid 3-O-glucosyltransferase (3GT). Anthocyanidins were converted by 3GT to the first stable glycosidic anthocyanins in the flavonoid biosynthetic pathway, pelargonidin 3-O-glucoside and cyanidin 3-O-glucoside [85]. The researchers identified UDP-glucose as the rate-limiting step in anthocyanin biosynthesis in E. coli and thereafter optimized UDP-glucose production by supplementing with orotic acid, a cheap uridine triphosphate (UTP) precursor, and performing a gene deletion and a set of gene overexpressions. As synthesis of UDP-glucose interfaces nucleotide biosynthesis, the pentose phosphate pathway, glycolysis, and energy production pathways, engineering its overproduction is a nontrivial task. Episomal overexpression of endogenous phosphoglucomutase (PGM) and glucose-1-phosphate uridylyltransferase (GALU), which convert glucose-6-phosphate (G6P) to glucose-1-phosphate (G1P) and produce UDP-glucose from G1P and UTP, respectively, shunted carbon flux from the pentose phosphate pathway toward UDP-glucose through the G6P branching point [57, 134]. These genetic modifications combined with the overexpression of endogenous nucleoside diphosphate kinase (NDK), the limiting step in the linear UTP synthesis pathway by orotic acid assimilation, and deletion of a gene encoding UDP-glucose dehydrogenase (UDG), which consumes UDP-glucose to form UDP-glucuronic acid, to yield increased UDP-glucose accumulation of 104 mg L⁻¹ [96, 135, 136]. Due to the natural production of UDP-glucose in E. coli for cell wall synthesis and the ability to achieve increased production of UDP-glucose, microbial glycosylation of isoflavonoid aglycones with heterologous glycosyltransferases is an economically viable option. To the best of our knowledge, Table 54.1 summarizes the most representative studies of microbial production of plant natural isoflavonoids to date.

4 Mutasynthesis and Protein Engineering for Non-natural Isoflavonoid Production in Microbes

Mutasynthesis is a common semisynthetic tool that hijacks natural product biosynthesis through the feeding of non-natural substrate analogs to produce non-natural analogs to natural products. This methodology takes advantage of the natural allowable range of
Table 54.1 Reports demonstrating microbial production of plant natural isoflavonoids

<table>
<thead>
<tr>
<th>Isoflavonoid target</th>
<th>Precursor</th>
<th>Host organism</th>
<th>Genes: Donors</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Genistein 26 | \(N\)-acetylcysteamine-attached \(p\)-coumaric acid | *E. coli* | CHS: *G. echinata*
IFS: *G. echinata*
CHI: *P. lobata* | [110] |
| Genistein 26 | Tyrosine 3 | *E. coli* and *S. cerevisiae* coculture | PAL: *R. rubra*
4CL: *S. coelicolor*
CHS: *G. echinata*
CHI: *P. lobata*
IFS: *G. echinata*
ACC: *C. glutamicum* | [110] |
| Genistein 26 | Naringenin 23 | *S. cerevisiae* | IFS: *T. pratense*
CPR: *O. sativa* | [103] |
| Genistein 26 | Phenylalanine 2 | *S. cerevisiae* | PAL: *P. trichocarpa* \(\times\) *P. deltoides*
CPR: *P. trichocarpa* \(\times\) *P. deltoides*
C4H: *G. max*
4CL: *G. max*
CHS: *G. max*
CHI: *G. max*
IFS: *G. max* | [101] |
| Genistein 26 | \(p\)-coumaric acid 6 | *S. cerevisiae* | PAL: *P. trichocarpa* \(\times\) *P. deltoides*
CPR: *P. trichocarpa* \(\times\) *P. deltoides*
C4H: *G. max*
4CL: *G. max*
CHS: *G. max*
CHI: *G. max*
IFS: *G. max* | [101] |
| Genistein 26, Daidzein 27 | Naringenin 23, Isoliquiritigenin | *S. cerevisiae* | CHI\(^a\): *M. sativa*
IFS\(^a\): *G. max* | [112] |
| Genistein 26 | Naringenin 23 | *S. cerevisiae* | IFS: *G. max* | [137] |
| Genistein 26, Daidzein 27 | Naringenin 23, Liquiritigenin | *S. cerevisiae* | IFS: *G. echinata* | [69] |

(continued)
enzyme-substrate specificity and favors highly promiscuous enzymes that can convert non-natural analogs of the natural substrate to novel products. Since many plant natural products possess valuable medicinal properties, it is of significant interest to explore the space of non-natural product analogs that has not yet been evolutionarily surveyed because of the lack of non-natural substrates in the environment. Presumably some of these non-natural analogs could have enhanced or even unique pharmaceutical properties. Production of flavonoids using mutasynthesis or substrate feeding has been accomplished by several groups as reported elsewhere [60, 82, 97, 100].

Structural studies often utilize protein engineering tools such as site-directed mutagenesis to evaluate the roles of various amino acid residues in catalytic mechanisms. While this can furnish indispensable insight on enzyme-substrate interaction, it is of significant interest to metabolic engineers because it also enables construction of tailor-made enzyme mutants with improved kinetic properties, with the ability to accept structurally related substrates, with reaction reversibility for substrate-product interconversion, and with altered substrate and product regiospecificity. Protein engineering tools such as site-directed mutagenesis and directed evolution have been applied to improve production of both natural and non-natural flavonoid, isoflavonoid, and other plant natural product derivatives [87, 138–147]. Plant natural products can also be microbi ally catalyzed by enzymes native to the microbe to form compounds not known to exist in plants [82, 100, 119, 148–153]. These phytochemical derivatives have the potential to be utilized as human therapeutics, as the microbes catalyzing these novel reactions have been isolated from the human gut and are purported to have beneficial health impacts on their human hosts [152–157].

4.1 Mutasynthesis for Non-natural Isoflavonoid Production

Mutasynthesis involves the chemical synthesis of non-natural substrates that are similar in structure to natural substrates. After a library of non-natural analogs
are chemically synthesized, enzymatic conversion of the non-natural analogs is performed to isolate novel non-natural compounds, and the results can then be assessed to elucidate mechanisms of enzymatic catalysis and to determine substrate specificity requirements. This so-called semisynthetic approach, or the combination of chemical synthesis and biosynthesis, has also been utilized for production of non-natural isoflavonoids.

In a multiplex experiment, Chemler and colleagues evaluated the substrate specificity of IFS enzymes from five different plant species (G. max, T. pratense, G. echinata, P. sativa, and M. truncatula) [117]. Each enzyme was cloned into yeast and was supplemented with compounds from a library of natural and non-natural flavanones 12. Non-natural flavanones 12 were synthesized to mimic natural flavanones 12 and isoflavones 13; specifically, many library constituents were 7-monohydroxylated or 5,7-dihydroxylated. The library also consisted of flavanones 12 with B-ring substituents, such as single or multiple hydroxy, methoxy, ethoxy, and halide side groups. Ultimately 19 non-natural flavanones 12 and 7 natural flavanones 12 were utilized to assess IFS substrate flexibility, resulting in the biosynthesis of 4 natural isoflavones 13 and 14 non-natural isoflavone 13 analogs which are tabulated in Table 54.2. IFS substrate requirements were deduced from the rate of conversion of different flavanones 12, including the necessity for hydroxylation at C7, the expendability of C5 hydroxylation, the incompatibility of C2' or C6' substitutions, the toleration of small side-group substitutions at C3' or C5', and the absolute requirement of C4' hydroxylation for production of 2-hydroxyisoflavones. Due to the high affinity of genistein 26 for human estrogen receptors α (hERα) and β (hERβ), isoflavones 13 are selective estrogen receptor modulator (SERM) drug candidates [158–161]. SERMs can be used to inhibit or stimulate estrogen receptors, thereby enabling their use as hormone replacements and decreasing the risk of diseases such as osteoporosis and breast cancer [17, 50, 53, 160]. In an effort to determine the therapeutic potential of the semisynthetic isoflavones 13 in the previously described library, the interaction of each compound with hERα and hERβ was assessed using an in vitro competitive binding assay. As expected, the different isoflavones 13 were found to show variable activity against the human estrogen receptors. Of particular interest, both 3'-bromo-4',5,7-trihydroxyflavone and the natural isoflavone 13 orobol displayed binding capabilities equal to genistein 26. Structure-activity relationships between isoflavones 13 and hERs were then deduced to yield insight for future design of isoflavone 13 SERMs. Of note, the authors suggest that novel isoflavones 13 with small substituents at the C3' position should elicit improved interactions with estrogen receptors [117].

4.2 Protein Engineering for Non-natural Isoflavonoid Production

Protein engineering has been utilized to study the mechanism by which isoflavonoid aglycones are converted to isoflavonoid glycosides by uridine diphosphate glycosyltransferases, a large protein class catalyzing the transfer of activated
Table 54.2 Mutasynthesis for natural and non-natural isoflavonoid production

![Flavanone 12](image) → ![IFS CPR HIDH](image) → ![Isoflavone 13](image) or ![Isoflavanol 34](image)

<table>
<thead>
<tr>
<th>Flavanone precursor</th>
<th>Side-group decoration</th>
<th>R^5</th>
<th>$R^{3'}$</th>
<th>$R^{4'}$</th>
<th>$R^{5'}$</th>
<th>Primary biotransformation product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naringenin 23</td>
<td>OH H</td>
<td>OH H</td>
<td>Genistein 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquiritigenin</td>
<td>H H</td>
<td>OH H</td>
<td>Daidzein 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriodictyol</td>
<td>OH OH</td>
<td>OH H</td>
<td>Orobol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butin</td>
<td>H OH</td>
<td>OH H</td>
<td>3',4',7-Trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homoeriodictyol</td>
<td>OH OCH$_3$</td>
<td>OH H</td>
<td>3'-Methoxy-4',5',7-trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4',7-Dihydroxy-3'-methoxyflavanone</td>
<td>H OCH$_3$</td>
<td>OH H</td>
<td>4',7-Dihydroxy-3'-methoxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3',5'-Dimethoxy-4',5,7-trihydroxyflavanone</td>
<td>OH OCH$_3$</td>
<td>OH OCH$_3$</td>
<td>3',5'-Dimethoxy-4',5,7-trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4',7-Dihydroxy-3',5'-dimethoxyflavanone</td>
<td>H OCH$_3$</td>
<td>OH OCH$_3$</td>
<td>4',7-Dihydroxy-3',5'-dimethoxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-Ethoxy-4',5,7-trihydroxyflavanone</td>
<td>OH OCH$_2$CH$_3$</td>
<td>OH H</td>
<td>3'-Ethoxy-4',5,7-trihydroxyflavanone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4',7-Dihydroxy-3'-ethoxyflavanone</td>
<td>H OCH$_2$CH$_3$</td>
<td>OH H</td>
<td>4',7-Dihydroxy-3'-ethoxyflavanone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-Methyl-4',5,7-trihydroxyflavanone</td>
<td>OH CH$_3$</td>
<td>OH H</td>
<td>3'-Methyl-4',5,7-trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4',7-Dihydroxy-3'-methylflavanone</td>
<td>H CH$_3$</td>
<td>OH H</td>
<td>4',7-Dihydroxy-3'-methylisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3',5'-Dimethyl-4',5,7-trihydroxyflavanone</td>
<td>OH CH$_3$</td>
<td>OH CH$_3$</td>
<td>3',5'-Dimethyl-4',5,7-trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4',7-Dihydroxy-3',5'-dimethylflavanone</td>
<td>H CH$_3$</td>
<td>OH CH$_3$</td>
<td>4',7-Dihydroxy-3',5'-dimethylisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-Chloro-4',5,7-trihydroxyflavanone</td>
<td>OH Cl</td>
<td>OH H</td>
<td>3'-Chloro-4',5,7-trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-Chloro-4',7-dihydroxyflavanone</td>
<td>H Cl</td>
<td>OH H</td>
<td>3'-Chloro-4',7-dihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-Bromo-4',5,7-trihydroxyflavanone</td>
<td>OH Br</td>
<td>OH H</td>
<td>3'-Bromo-4',5,7-trihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-Bromo-4',7-dihydroxyflavanone</td>
<td>OH Br</td>
<td>OH H</td>
<td>3'-Bromo-4',7-dihydroxyisoflavone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sugars to various substrates. These studies yield insight into the interactions between specific amino acid residues and substrate, enabling rational design of enzyme mutants for specific purposes. Structure-guided enzyme engineering is often directed at or around the active site or binding pocket region to alter substrate specificity, enzymatic activity, and product regioselectivity. In the case of UGT71G1 from *M. truncatula*, a point mutation in residue 202 from tyrosine (Tyr) to alanine (Ala), Y202A, enables the conversion of genistein 26 to both 7-O-glucoside and 5-O-glucoside, whereas the native enzyme only enables conversion of genistein 26 to the 7-O-glucoside product. Residue 202 is located at one end of the acceptor (isoflavonoid aglycone) binding pocket, so this mutation from an amino acid with a large aromatic side group to one with a small side group presumably increases the volume of the pocket, providing the acceptor with an increased number of possible docking configurations [140].

Another protein engineering effort for isoflavonoid production focused on *M. truncatula* UGT85H2. A point mutation in residue 305 from isoleucine (Ile) to threonine (Thr), I305T, showed a 19-fold increase in enzyme activity with a 25-fold decrease in the Michaelis constant (*K_m*) for conversion of biochanin A 29 into sissotrin 33. Additionally, the mutation of residue 200 from valine (Val) to glutamic acid (Glu), V200E, imparted deglycosylation activity in the presence of UDP in the reaction mixture, enabling the removal of the glucose residue from sissotrin 33, the biochanin A 29 7-O-glucoside, to form biochanin A 29 aglycone. The mutation also decreased *K_m* by sevenfold, increased maximum velocity (*V_{max}*), and turnover number (*k_{cat}*), and increased catalytic efficiency by 54-fold. Amino acid 200 resides on one end of the acceptor binding pocket, and docking studies indicate that the negatively charged glutamic acid side group might interact with the 7-OH of biochanin A 29. This novel method utilizing mutagenesis to impart reversibility could be applied to deglycosylation of other flavonoids [141].

The aforementioned UGT mutagenesis studies involved variations in activity and regioselectivity. However, glycosylation of flavonoids with sugars other than glucose occurs in nature and should be possible to engineer in microbes. In addition to UDP-glucose, for instance, UDP-glucuronic acid, UDP-galactose, UDP-xylose, and UDP-rhamnose are all known to act as nucleotide-activated sugar donors in various plant species [162]. In *Bellis perennis* (red daisy) BpUGT94B1, the positively charged guanidinium side group of a single arginine (Arg) residue at position 25 is critical for UDP-glucuronic acid donor activity due to its interaction with the negatively charged carboxylate group on glucuronic acid [139]. Similarly, a family of UGTs known as flavonoid 7-O-glucuronosyltransferases (F7GATs) found in plants from the Lamiales order share a conserved arginine residue in the sugar donor binding pocket that is responsible for the specificity toward UDP-glucuronic acid. Site-directed mutagenesis of *Perilla frutescens* UGT88D7 residue 350 containing arginine (which corresponds to tryptophan (Trp) 360 in UGT71G1) to Trp abolished UDP-glucuronic acid specificity and instead invoked UDP-glucose sugar donor specificity. Once again the cationic guanidinium moiety on arginine is crucial for recognition and interaction with the anionic carboxylate group on UDP-glucuronic acid.
4.3 Other Isoflavonoid Biotransformations

In a series of recent reports, a G6P isomerase (PGI, catalyzing the isomerization of G6P to fructose-6-phosphate) knockout strain of *E. coli* was engineered to produce flavonoid glycosides from flavonoid aglycones. Specifically, the strain produced 7-*O*-xylosyl naringenin and 7-*O*-glucuronyl quercetin by overexpressing an *Arabidopsis thaliana* UGT and an artificial UDP-sugar biosynthetic gene cluster (containing *E. coli* K-12 GALU and *Micromonospora echinospora* spp. *calichensis* UDG and UDP-glucuronic acid decarboxylase, known as UXS1) in combination with naringenin [23] and quercetin feeding [163, 164]. Continuing their efforts, Simkhada and coworkers recently engineered *E. coli* for production of 3-*O*-rhamnosyl quercetin, 3-*O*-rhamnosyl kaempferol, and 3-*O*-allosyl quercetin by assembling artificial thymidyldiphosphate (TDP)-sugar biosynthetic pathways for TDP-**L**-rhamnose and TDP-6-deoxy-**D**-allose and feeding the strain with quercetin and kaempferol aglycones.

TDP-sugar production was enabled by the deletion of PGI to shunt flux toward G1P and overexpression of TDP-glucose synthase (TGS) from *Thermus caldophilus* GK24 to form the activated nucleotide sugar [165]. TDP-**L**-rhamnose was produced by overexpression of *Salmonella typhimurium* LT2 TDP-glucose 4,6-dehydratase (DH) and *Streptomyces antibioticus* Tu99 TDP-4-keto-6-deoxyglucose 3,5-epimerase (EPI) and TDP-glucose 4-ketoreductase (KR); TDP-6-deoxy-**D**-allose was produced by overexpression of *T. caldophilus* GK24 DH and *Streptomyces* sp. KCTC 0041BP TDP-hexose 3-epimerase (GERF) and TDP-4-keto-6-deoxyglucose reductase (GERK). Overexpression of a 3GT from *A. thaliana* completed the 3-*O*-glycosylation of the flavonoid aglycone precursors with the TDP-sugars [166]. These engineering efforts demonstrate the potential for regiospecific glycosylation of isoflavonoids with tailored sugar moieties that could one day enable design of therapeutics with altered activities and varying degrees of bioavailability; from a microbial production perspective, customizable glycosylations might also mitigate cellular toxicity while improving isoflavonoid solubility, stability, and transport from the cell, ultimately leading to higher product yields [126, 167].

Other flavonoid biotransformations catalyzed by microbial enzymes will also allow for production of novel, nonplant flavonoids from amino acid precursors. Two bacterial nonheme dioxygenases, biphenyl dioxygenase (BDO) and naphthalene dioxygenase (NDO), have recently been shown to regioselectively and stereoselectively convert flavonoids, including isoflavones [13] and isoflavanols [34], to epoxides and dihydrodiols [151, 168–172]. BDO from *Pseudomonas pseudoalcaligenes* KF707 and NDO from *Pseudomonas* sp. strain NCIB9816-4 are able to accept various flavonoids as substrates due to the presence of biphenyl and naphthalene moieties within the flavonoid core structure [1] [168]. Additionally, expression of *Streptomyces avermitilis* MA-4680 7-*O*-methyltransferase (SaOMT-2) in *E. coli* shows substrate promiscuity and transfers a methyl group to flavones [14] and isoflavones [13] [173]. This is the first example of a methyltransferase known to act upon both flavones [14] and isoflavones [13], opening up a route for biosynthesis of
non-natural methylated isoflavones 13 by feeding of non-natural precursors. Another example of microbial isoflavonoid biotransformation is the reduction of daidzein 27 to equol. Although several microorganisms isolated from mammalian digestive tracts have been shown to catalyze the nonstereospecific transformation, a recently isolated gram-negative anaerobic species, MRG-1, shares high homology with Coprobacillus species and was shown to exhibit stereospecific reductase activity for conversion of several isoflavones 13 to the corresponding isoflavanones. Stereoselective reduction from the highly active MRG-1 isoflavone reductase (IFR) opens new biotechnological routes for production of enantiopure flavanones 12 [153].

5 Conclusions

Metabolic engineering of microbes for isoflavonoid biosynthesis showcases state-of-the-art methodologies for high-level production of pharmaceutically and nutraceutically relevant compounds. Decoupling production of plant secondary metabolites from their native, convoluted regulatory backgrounds enables predictable control and design, while transplanting biosynthetic pathways into fast-growing, well-characterized microorganisms allows utilization of advanced genetic and computational tools and an abundance of biological data. Genetically tractable microbes such as E. coli and S. cerevisiae provide an unmatched platform for combinatorial biosynthesis of complex plant natural products and their non-natural derivatives by transformation with heterologous genes from different organisms.

Though microbial production of plant natural products is a promising alternative to traditional methods, further research will continue to improve titers and assist in the discovery of novel isoflavonoid biotransformations. A significant challenge that has not yet been accomplished is the expression of the entire isoflavonoid metabolic pathway in E. coli, from aromatic amino acid precursors without supplementation of intermediates. Given the propensity for feedback inhibition and host toxicity of many flavonoid and isoflavonoid intermediates, protein engineering efforts will likely be required to enable high-level isoflavonoid production [174–176]. Furthermore, in vivo characterization of all enzymes in the isoflavonoid pathway will help determine rate-limiting steps that require higher relative promotion or expression level. Stoichiometric-based modeling and computational algorithms can also be utilized to predict genetic manipulations for maintaining high growth coupled with high specific production. Several thorough reviews have addressed the relative merits of various algorithms [177–182].

Feedback inhibition can be limited by optimizing both upstream and downstream enzyme expression such that the inhibitor does not significantly accumulate. In instances where a metabolite inhibits an enzyme in the isoflavonoid pathway, enzyme mutagenesis can alter the structural interaction between the enzyme and its inhibitor to block the inhibition mechanism. Recently, allosteric feedback inhibition of a tomato peel 4CL by naringenin 23, a product several steps downstream, was significantly reduced through directed evolution in E. coli [181].
Cellular toxicity can also be ameliorated by various engineering strategies. Toxicity caused by intracellular accumulation of an intermediate can be limited by pathway optimization to ensure that the metabolite is utilized soon after it is produced. Pathway optimization can be achieved by accurate in vivo characterization of all enzymes in the pathway. Additionally, spatial localization of the enzymes catalyzing subsequent steps in a pathway serves as a “pipeline” to channel intermediate substrates to their respective catalyzing enzymes [184, 185]. This spatial proximity effectively leads to increased local substrate concentration and can be engineered by creating a protein fusion between adjacent enzymes, by docking multiple enzymes to a protein or RNA scaffold at minimal distance from each other, or by compartmentalizing all of the enzymes in a biosynthetic pathway in an isolated enclosure, such as a bacterial microcompartment (BMC) or an artificial organelle [186–191]. Such methodologies have enabled significant improvement in production levels of other microbial products and are outlined in great detail in a recent review by Agapakis and colleagues [185]. If the final product is toxic to the cell, one conceivable method for reducing the toxicity would be to engineer BMCs or artificial organelles for sequestration of the responsible metabolites. An alternative method is to engineer product transport. Overexpression of a library of efflux pumps and extracellular transporters can pinpoint proteins capable of selective export of a target product, while product glycosylation or deglycosylation could also improve export from the cell [192–194]. It is also important to consider if the product is natively transported into the cell from the extracellular environment; blocking transport of the toxic compound back into the cell can be accomplished by knocking out genes involved in product uptake.

Further work aimed at bioprospecting, culturing hard-to-culture microbes, searching for “unknown” and “orphan” enzymes that have not yet been characterized, and designing promiscuous enzymes capable of decorating and transforming flavonoids and their unnatural analogs will increase the range of isoflavonoid derivatives produced in microbes [195]. The search for enzymes capable of such manipulations should not be limited to plants, however, as many microbes endemic to mammalian guts have evolved to metabolize the plant phenylpropanoids ingested by their hosts. Current research efforts in these areas will lead to economically viable microbial platforms for production of isoflavonoids and products of high medicinal value.

References

40. Filner P, Varner JE, Wray JL (1969) Environmental or developmental changes cause many enzyme activities of higher plants to rise or fall. Sci (NY) 165:358–367
83. Chemler JA (2009) Metabolic engineering of Escherichia coli and Saccharomyces cerevisiae to mutasynthesize natural phenylpropanoids and novel analogs

derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1). Bioorg Med Chem 14:1599–1607
135. Li Z (2008) High yield anthocyanin biosynthesis in metabolic engineering Escherichia coli. Master of Science, Department of Chemical and Biological Engineering

