Complete degradation of bisphenol A and nonylphenol by a composite of biogenic manganese oxides and *Escherichia coli* cells with surface-displayed multicopper oxidase CotA

Zhen Zhang\(^{a,d}\), Zhiyong Ruan\(^b\), Jin Liu\(^a\), Chang Liu\(^a\), Fuming Zhang\(^c\), Robert J. Linhardt\(^c\), Lin Li\(^{a,b}\)\(^*\)

\(^{a}\) State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China

\(^{b}\) Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China

\(^{c}\) Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

\(^{d}\) College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China

HIGHLIGHTS
- A composite of biogenic Mn oxide and engineered bacterium for dual degradation.
- Complete degradation of representative EDCs and elimination of oestrogenic toxicity.
- Synergistic adsorption and multiple oxidative degradations.
- High repeatability and regeneration with potential for continuous operation.

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are a large group of environmental toxicants that pose serious risks to public health. In this study, we report a new method for the complete degradation of EDCs using a dual oxidation-action composite of biogenic manganese oxides and engineered *Escherichia coli* cells with surface-expressed multicopper oxidase CotA. The *cotA* gene from a Mn\(^{2+}\)-oxidizing bacterium was constructed as a fusion gene “inaQ-N/cotA” with an anchoring motif *inaQ-N* from *Pseudomonas syringae* and was expressed in *E. coli* cells to display catalytic CotA on the cell surface. Under prolonged Mn\(^{2+}\)-enriched culturing conditions, the engineered cells were capable of forming microspherical aggregated composites that were mainly composed of ramsdellite (MnO\(_2\)). The ability of the composite to degrade two EDCs, bisphenol A (BPA) and nonylphenol (NP), was investigated. GC–MS assays identified 7 and 10 degraded intermediates using the \(^{13}\)C isotope from \(^{13}\)C-labeled BPA and \(^{13}\)C-labeled NP, respectively. The appearance of \(^{13}\)CO\(_2\) from both reaction mixtures revealed mineralization pathways of BPA and NP by this composite. Bioassays using *Caenorhabditis elegans* as an indicator organism demonstrated that the estrogenic activity of BPA and NP was eliminated by these degradation processes. The reaction of the composite proceeded at an acidic pH and room temperature. A consecutive three-round treatment process showed comparable levels of degradation by the composite in repeated reactions and showed that the activity could be easily recovered. Moreover, the superoxide radical levels of BPA-degradation and NP-degradation were monitored during the 24 h reaction time, and possible BPA-degradation and NP-degradation pathways by the composite were proposed.

ARTICLE INFO

Keywords:
Endocrine-disrupting chemical
Biodegradation
Spore coat protein A
Manganese oxide
Cell surface display technology

GRAPHICAL ABSTRACT

REFERENCES

https://doi.org/10.1016/j.cej.2019.01.062
Received 9 November 2018; Received in revised form 5 January 2019; Accepted 11 January 2019
Available online 14 January 2019

1385-8947/ © 2019 Elsevier B.V. All rights reserved.
1. Introduction

Endocrine-disrupting chemicals (EDCs) are a large group of wide-spread substances that exert potentially adverse health effects by mimicking endogenous hormones in affected organisms [1]. High levels of EDCs cause serious endocrine, reproductive or neurological problems in humans and wildlife [2,3]. Exposure to moderate levels of EDCs also elicits abnormal responses that occur at inappropriate times or can block the functions of normal hormones [4]. Even trace levels of EDCs elicits abnormal responses that occur at inappropriate times or can lead to sustained estrogenic effects; for example, a very pronounced increase in vitellogenin was observed in trout plasma exposed to certain endocrine-disrupting agents [5]. These phenomena are often found in various surface water and wastewater effluents [6] and ultimately accumulate in humans through the food chain.

Over the past decade, intensive efforts have been undertaken to develop effective processes for the treatment of EDCs in wastewater effluents or other environments [7]. Physiochemical methods, such as adsorption, membrane-based filtration, and electrochemical and photochemical degradation, have been studied. However, these methods have generally been considered to be ineffective or too expensive [7,8]. Biological processes based on microbial enzymes or bioactive materials are increasingly appealing alternatives because of their high biodegradability, cost-effectiveness and environmental friendliness [9]. The effective biodegradation of EDCs by a variety of microorganisms and their enzymes have been reported, including a purified laccase from the fungus Trametes villosa that degrades bisphenol A (BPA) [10], a heterologously expressed laccase from Irpex lacteus that treats nonylphenol (NP) [11], and a manganese peroxidase that degrades BPA and NP [12]. Even at low EDC concentrations, the degradation achieved by microorganisms or enzymes was superior compared with other treatments [13]. However, studies of the complete degradation of EDCs by microbial consortia have been limited [14]. These studies have suggested that residual substrate or even transiently increased estrogenic activity during EDC decomposition by microbes or modifying enzymes [1,14].

Manganese oxides (Mn oxides in brief) are natural catalysts and adsorbents with high redox potential and high adsorptive capacities [15]. They can remove organic or inorganic contaminants, such as phenols, chlorinated phenols, chlorinated anilines, atrazine, and a variety of inorganics [16,17]. Abiotic Mn dioxides have been previously used to oxidize BPA [18], E2 [19], estrone, estriol and EE2 [20]. The ability of biogenic Mn dioxides produced by manganese-oxidizing bacteria to remove E2 has also been evaluated [21]. These Mn dioxide-based treatments display high efficiency for estrogen removal and provide additional technical approaches for EDC treatment.

In the natural environment, biogenic manganese oxidation, which is primarily accomplished by bacteria through enzymatic catalysis, represents a much faster pathway for Mn oxide mineralization [15]. Increasing evidence from a variety of marine and soil Mn2+ -oxidizing bacteria have indicated that oxidoreductase multicopper oxidase (MCO) oxidizes Mn2+ to Mn4+, resulting in the formation of biogenic Mn oxides [22]. This oxidation process appears to occur on the cell surface [23,24]. Moreover, the ability of a range of naturally occurring or synthetic Mn oxides to promote the transformation of various organic pollutants has been verified [16,17], and MCO on the surface of bacteria was capable of catalyzing certain organic substrates [25,26]. Hence, a cell surface display strategy in which MCO is immobilized on bacteria was capable of catalyzing certain organic substrates [25,26]. We previously developed two bacterial cell surface display systems for MCOs on Bacillus thuringiensis (Bt) and Pseudomonas putida (Pp) cells, and we demonstrated the enzymatic activities of these systems as whole-cell catalysts. Spot feast protein A (CotA) from Bacillus also has MCO-like oxidoreductase activity [29] and Mn2+-oxidizing activity [30], which are involved in the formation of biogenic Mn oxides [30]. Hence, in the current study, we engineered Escherichia coli cells to develop a biodegradation composite capable of completely degrading EDCs. The cotA gene from a Mn2+-oxidizing bacterium, Bacillus pumilus A56, was expressed as a chimeric “inaQ-N/cotA” gene with the gene inaQ-1 from Pseudomonas syringae to enable E. coli cells to project the fusion protein InaQ-N/CotA on the cell surface. Both laccase activity and Mn2+-oxidizing activity were confirmed in the engineered E. coli cells, and these cells underwent prolonged Mn2+-rich cultivation to form regular aggregates consisting of engineered E. coli cells surrounded by Mn oxides. The degradability induced by the composite for two representative EDCs, BPA and NP, was compared with that induced by Mn oxides or engineered E. coli cells alone. Intermediates of 13C-labeled BPA and 13C-labeled NP degradation were assayed, and the abundance of 13CO2 from the degradation reactions was determined. The residual estrogenic activity of the degradation products was assayed using the model organism Caenorhabditis elegans as an indicator. The superoxide radical ion concentrations in BPA-degradation and NP-degradation were determined during the reaction with the aim of providing hints about the possible degradation mechanisms by our composite.

2. Materials and methods

2.1. Chemicals, bacterial and nematode strains, and culture conditions

Stable isotope 13C-labeled BPA and NP were purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA). All other chemicals were analytical grade. E. coli JM109 was used as the host cell for plasmid constructions and surface display experiments. Laboratory stock B. pumilus A56, which was isolated from Fe-Mn nodules, was used as the parent strain for the gene cotA. Synchronized fourth-stage (L4) larvae from C. elegans wild-type strain N2 (Bristol) were used for bioassays of the estrogen toxicity of the EDC degradation products.

For plasmid construction, protein expression and surface localization experiments using recombinant E. coli, the cells were grown at 30 °C in lysogenic broth (LB) medium [31] supplemented with ampicillin at a final concentration of 100 μg mL−1 when appropriate. For the Mn oxidation assays and biodegradation experiments, all strains were cultured at 30 °C in Lep medium [32] containing 20 mmol L−1 1 MnCl2, and 100 μg mL−1 ampicillin. Cells were grown in LB or Lep medium until reaching an OD600 nm of 0.6 after which isopropyl-β-D-thiogalactoside (IPTG) was added at a final concentration of 0.1 mmol L−1 and were cultured for an additional 24–120 h to induce recombinant protein expression in transformed E. coli cells.

2.2. Plasmid construction and transformation

Bacterial plasmid DNA was prepared using a standard procedure [31]. The cotA gene was amplified via polymerase chain reaction (PCR) from the B. pumilus A56 genome using the primers Fcot1: 5′ −GGCTG CAGTAGAACCTGAGAAATTTG−3′ (the PstI site is underlined) and Rcot1: 5′ −CTAGATTTCTTTAATATTCCATCGG−3′ (the EcoRI site is underlined). The amplified fragment was sequenced, digested with PstI/ EcoRI, and then ligated to the PstI/EcoRI sites of the E. coli expression vector pTrcHis C (Invitrogen), thereby yielding the plasmid pMB499 (Fig. S1A). To construct the fusion gene inaQ-N/cotA, the gene cotA was amplified from the plasmid pMB499 with the primers Fcot2: 5′ −GCGG CATCCGTAACCTGAAGAATTTG−3′ (the BamHI site is underlined) and Rcot2: 5′ −CTAGATTTCTTTAATATTCCATCGG−3′ (the EcoRI site is underlined). The resulting fragment was digested with BamHI and EcoRI and then inserted into the BglII/EcoRI sites of a previously constructed plasmid, pMB102 [33], to generate the plasmid pMB100.
harboring InaQ-N/cotA under the control of the IPTG-inducible E. coli promoter P_{prom}. E. coli cells were transformed as previously described [31]. The recombinant E. coli strains harboring pMB499 and pMB500 were termed MB499 and MB500, respectively.

2.3. CotA expression and polyclonal cotA antiserum preparation

Recombinant E. coli MB499 expressed CotA after induction with 0.1 mmol L^{-1} IPTG for 5 h at 28 °C. The expressed CotA was separated by SDS-PAGE on 12.5% gels (Fig. S2A). The CotA protein band was excised and purified using a Ni-affinity chromatography kit (WSSB Chromat. Co., Beijing, China). The purified CotA was separated again by SDS-PAGE. The excised CotA band was then used to prepare a polyclonal CotA antiserum following previously described procedures [34].

2.4. Assays for surface localization of InaQ-N/CotA

E. coli MB500 cells were grown at 37 °C, and the expression of InaQ-N/CotA was induced with 0.1 mmol L^{-1} IPTG for 5 h at 28 °C. Cell suspensions were passed through a French press cell (Thermo, USA) at 5000 psi. The disrupted mixtures were then fractionated following previous procedures [35]. The InaQ-N/CotA fusion protein prepared from the whole cell fraction (WC), cytoplasmic fraction (CP), and outer membrane fraction (OM) of E. coli MB500 cells was analyzed by SDS-PAGE in 10% polyacrylamide gels. The proteins in the gels were then transferred onto Hybond polyvinylidene fluoride membranes (Amer sham, USA). Western blot analysis of the cell fractions was then performed using the polyclonal anti-CotA antiserum as the primary antibodies. Immunofluorescence microscopy examination and fluorescence-activated cell sorting (FACS) analysis of the intact E. coli MB500 cells were also performed following previously described procedures [28], with the exception that the polyclonal anti-CotA antiserum was used as the primary antibody. FACS measurements were recorded as the percentage of total CotA-labeled cells relative to the total Cy5 fluorescence.

2.5. Scanning electron microscopy (SEM)

E. coli MB500 cells were grown in Lept medium containing 1 mmol L^{-1} Mn^{2+} for 5 days. The suspensions were centrifuged, and the samples were prepared to be measured following previously described procedures [36] prior to SEM using a JSM-6390/LV scanning electron microscope (NTC, Japan).

2.6. Powder X-ray diffraction

Bacterial biogenic Mn oxides were extracted as previously described [37]. The extracted samples were then freeze-dried to obtain Mn oxide powders for X-ray diffraction (XRD) analysis (Bruker D8 Advance X-ray diffractometer). Samples were placed on low-background quartz plates and scanned over the range of 2θ = 5°–85°, and a LynxEye detector and Ni filter plate were employed. The measurements were performed under the following conditions: Cu Kα (λ = 0.15418 nm); tube voltage = 40 kV; tube current = 40 mA; and step scan with a step size = 0.02° and scan speed = 10° min^{-1}.

2.7. Degradation experiments

For the EDC degradation experiments, three different matrices with degradation activity were prepared. E. coli MB500 cells were incubated in Lept medium containing 1 mmol L^{-1} Mn^{2+} for 5 days. The final culture was pelleted by centrifugation at 10,000 rpm for 5 min, and the pellet was washed three times with phosphate-buffered saline (PBS) (pH 7.0). The cell pellet was examined using SEM and XRD. This mixture was a composite and designated the “MB-MN” matrix. A portion of the MB-MN was broken using a French pressure cell at 15,000 psi six times to disrupt the bacterial cells. The resultant mixture was designated the matrix “MN". For comparison, the MB500 culture that was collected from Mn^{2+}-free medium was designated “MB”.

The degradation reaction mixture consisted of BPA or NP at an initial concentration of 2 ppm and an appropriate amount of the degradation matrix with either Mn^{2+} oxide activity equivalent to 65 ppm of MnO₂ (MB-MN and MN) or whole-cell laccase activity equivalent to 800 U mL⁻¹ of (MB-MN and MB) in 0.1 M sodium acetate buffer (pH 3.0). The reactions were performed in the dark. The EDC content of the reaction mixture was measured during the course of the reaction. The EDC relative removal value of the different matrices was calculated using the following formula:

Relative removal value (%) = \frac{C_i - C_f}{C_i} \times 100
(1)

where \(C_i\) denotes the initial EDC content, and \(C_f\) denotes the final EDC content. All experiments were performed at least in triplicate.

After the degradation reactions, the materials were collected from the reaction mixture by centrifugation (16,000 x g for 30 min), resuspended in an equal volume of 0.1 mol L⁻¹ sodium acetate buffer, and shaken at 150 rpm for 24 h at 25 °C to determine the potential adsorption of EDCs by the three matrices. The suspensions were then centrifuged at 16,000 x g for 30 min. The contents of the EDCs in the supernatant fluids were measured following the procedures described above. The relative adsorption value of EDCs by the materials was calculated using the following formula:

Relative adsorption value (%) = \frac{C_0 - C_f}{C_0} \times 100
(2)

where \(C_0\), \(C_i\), and \(C_f\) denote the adsorption content, the initial content, and the final content of EDCs, respectively.

2.8. Analytical assays

A continuous biodegradation experiment was performed, as described by Liu et al. [25]. Cell density was measured at 600 nm with a UV/VIS spectrophotometer (DU800 Nucleic Acids/Protein Analyzer, Beckman Coulter). For the whole-cell CotA laccase activity assay, cells were harvested and diluted to a unit cell density (OD₆₀₀ = 1.0) with a PBS buffer (pH 7.0). Whole-cell CotA laccase enzymatic activity was measured using 2,2’-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) (Amresco, Solon, USA) as the substrate at 25 °C, according to a previously described method [28]. One unit of enzyme activity was defined as the amount of enzyme required for the oxidation of 1 μmol L⁻¹ of ABTS per minute. The Mn^{2+}-oxidizing activity was determined by a standard lucidebekelin blue (LBB) spectrophotometric assay as previously described [38]. The amount of MnO₂ produced (1 μmol L⁻¹ MnO₂ corresponds to 0.4 μmol L⁻¹ K₂MnO₄) was defined as the Mn^{2+}-oxidizing activity of the bacterial cells.

The content of BPA and NP was determined by high-performance liquid chromatography with a mass spectrometer (LC-MS) using a reversed-phase Waters ACQUITY BEH C-18 column (2.1 mm × 50 mm × 1.7 μm) on an Agilent 1200/6460 LC/QQQ system. Prior to their introduction into the column, the sample solutions were filtered through a 0.45-μm membrane filter and degassed. The BPA and NP contents were determined according to the procedures described by Sajiki and Yonekubo [39] and Loos et al. [40], respectively.

The degradation products of BPA and NP were analyzed using an Agilent 7890A/5975C gas chromatography mass spectrometer (GC–MS) with an HP-5 MS fused-silica column (0.25 mm × 30 mm × 0.25 μm) based on previously described assay procedures for BPA [41] and NP [42].

The content of ¹³C-O₂ from the reaction mixtures of ¹³C-labeled BPA or ¹³C-labeled NP degradation was detected using a MAT-271 isotope mass spectrometer (Finnigan Co., USA), following a procedure...
described by Cao et al. [43]. Prior to the determination, 1 ppm each of 13C-labeled BPA and 13C-labeled NP was added to the degradation reaction container loaded with an appropriate amount of MB-MN, as described above. The container was sealed with wax immediately and was incubated at 30 °C while shaking at 150 rpm for 24 h.

The superoxide radical ion concentrations of BPA-degradation and NP-degradation were determined during the reaction time-course of 24 h following a method that was described previously [44].

2.9. Bioassays of degradation product estrogen toxicity

C. elegans was used as the model organism used to evaluate the estrogen toxicity of the EDC degradation products in eukaryotes. A multiple-generation toxicity bioassay was performed as described by Tominage et al. [45]. In brief, L4 larvae were transferred to NGM plates containing the BPA and NP degradation products. Similar procedures were performed to allow C. elegans to reproduce for more than five generations. The numbers of worms and eggs on the plates were counted from the fourth generation under a dissecting microscope at a fixed time every day to determine the sublethal toxicity (fecundity and reproduction) of the degradation products.

2.10. Continuous biodegradation experiments

For experiments involving three consecutive rounds of biodegradation, the biodegradation activity of MB-MN was tested at pH 3.0 and 25 °C. After the first-round reaction, the cells were harvested by centrifugation and used directly for the second-round and third-round reactions under similar conditions. The supernatant was removed by centrifugation after the second- and third-round reactions, and 100 mL Lept medium containing 1 mmol L⁻¹ MnCl₂ was added to the flasks to allow the growth of residual cells at 30 °C and 200 rpm for 4 h. This procedure was not conducted under strict aseptic conditions. A subculture of MB-MN was incubated at 30 °C while shaking at 150 rpm for 24 h. Then, the whole-cell laccase activity and Mn²⁺-oxidizing activity of MB500 cells were monitored over the course of a 144 h culture in Lept medium containing 1 mmol L⁻¹ MnCl₂ (Fig. 1A). For experiments involving protein expression by IPTG at 5 h, the whole-cell laccase activity of the MB500 cells increased to a maximum value of 26.4 U mL⁻¹ at 6 h (the highest activity of MB500 cells is higher than those the other two surface-displayed laccases, MCO266 [24] and WlacD [28]), reduced to an activity of approximately 20.0 U mL⁻¹ between 6 and 48 h, and exhibited an activity of 19.1 U mL⁻¹ at 144 h. Mn²⁺-oxidizing activity was detectable within 24 h and then exhibited a steadily increasing pattern from 24 – 120 h. Interestingly, during the later growth phase, the MB500 cells formed regular microspherical aggregates. SEM (Fig. 1B) revealed that these aggregates varied in diameter from approximately 10 μm to 20 μm. The microspherical aggregates were observed around the aggregates. Notably, the pH of the MB500 culture suspension remained lower than 8.0 during the entire culture period, which prevented the abiotic oxidation of Mn²⁺ because the reaction occurs preferentially at pH > 8.0 [46]. Moreover, although anaerobic conditions are favorable for the formation of some Mn compounds, such as rhodochrosite (MnCO₃) [47] or MnS [48], the use of Lept medium, which lacks CO₃²⁻, should not favor this formation because MnCO₃ has been reported to form idiomorphically at pH > 8, CO₃²⁻ > 4.4 × 10⁻¹⁰ mmol L⁻¹ and Eh < 418 mV [48]. On the other hand, we have previously confirmed that in a reaction system with only E. coli JM109 cells and organic substrates, soluble Mn²⁺ failed to be oxidized to Mn⁴⁺ in the absence of MCO [24]. Therefore, the observed aggregates were most likely formed by CotA-catalyzed biogenic Mn oxidation and not by an abiotic process.

3. Results

3.1. Construction of the CotA surface-projecting system and characterization of CotA expression

The CotA-encoding gene was amplified by PCR from the genome of B. pumilus A56. Sequence analysis and alignment of the nucleotide sequence of cotA using the online BLAST tool suggest that this 1530 bp gene (GenBank accession no. JQ035528.1) is a Bacillus spore coat protein CotA gene that shares 88% sequence identity with the P. pumilus SAFR-032 cotA gene (GenBank accession no. CP000813.1). The cotA gene encodes a 509 aa protein with a deduced molecular mass of 58.6 kDa and an isoelectric point of 6.12. The predicted full-length CotA protein contains four Cu²⁺-biding motifs with residues that are conserved in similar motifs in other MCOs (Fig. S1B), suggesting that this CotA is an MCO.

Heterologous expression of CotA in recombinant E. coli MB499 was induced by IPTG. SDS-PAGE analysis of the expression products revealed a band (Fig. S2A, lane 1, indicated by the red arrow) that corresponded to the expected molecular mass for CotA (58.5 kDa) but was not present in the JM109 profile (the recipient strain). This band therefore corresponded to CotA.

A previously characterized functional cell surface display system in E. coli [33] was used for the surface projection of CotA to develop a system for displaying catalytic CotA on the surface of E. coli. The anchor gene inaQ-N was fused with cotA to create the chimeric inaQ-N/cotA in a single encoding frame (Fig. S1A). The expression and surface localization of InaQ-N/CotA in transformed E. coli MB500 cells were analyzed by Western blot, immunofluorescence microscopy and flow cytometry assays (Figs. S2B–D). The Western blot profile indicated that InaQ-N/CotA was present in the OM fraction (Fig. S2B, lane OM) of the transformed cells because the OM-complex fraction exhibited a protein band corresponding to those present in the WC and CP fractions (Fig. S2B, lanes WC and CP). Immunofluorescence microscopy revealed clear Cy5 fluorescence on the cell surface of MB500 (Fig. S2C), thereby verifying the surface localization of CotA because the externally-added macromolecular Cy5-tagged antiserum cannot penetrate the outer membrane. This result is consistent with the results of the FACS assay, in which pronounced Cy5 fluorescence intensity was observed in intact MB500 cells (Fig. S2D). In contrast, only limited Cy5 fluorescence was observed in the negative control cells. Thus, these analyses confirmed the successful projection of the CotA protein onto the surface of E. coli MB500 cells.

The whole-cell laccase activity and Mn²⁺-oxidizing activity of MB500 cells were measured using the online BLAST tool searches on the GenBank nucleotide and amino acid (aa) sequence database using the National Center for Biotechnology Information (NCBI) server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The conserved domain architectures of CotA were analyzed using the NCBI online tool, “Conserved Domain Search” (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

2.12. Statistical analysis

Statistical analysis was performed using SPSS (Statistical Package for the Social Sciences) 13.0 statistical software. All data presented are the averages of at least three biological replicates. Statistical significance was defined as P < 0.05.

3. Results

3.1. Construction of the CotA surface-projecting system and characterization of CotA expression

The whole-cell laccase activity and Mn²⁺-oxidizing activity of MB500 cells were monitored over the course of a 144 h culture in Lept medium containing 1 mmol L⁻¹ MnCl₂ (Fig. 1A). For experiments involving protein expression by IPTG at 5 h, the whole-cell laccase activity of the MB500 cells increased to a maximum value of 26.4 U mL⁻¹ at 6 h (the highest activity of MB500 cells is higher than those the other two surface-displayed laccases, MCO266 [24] and WlacD [28]), reduced to an activity of approximately 20.0 U mL⁻¹ between 6 and 48 h, and exhibited an activity of 19.1 U mL⁻¹ at 144 h. Mn²⁺-oxidizing activity was detectable within 24 h and then exhibited a steadily increasing pattern from 24 – 120 h. Interestingly, during the later growth phase, the MB500 cells formed regular microspherical aggregates. SEM (Fig. 1B) revealed that these aggregates varied in diameter from approximately 10 μm to 20 μm. The microspherical aggregates were observed around the aggregates. Notably, the pH of the MB500 culture suspension remained lower than 8.0 during the entire culture period, which prevented the abiotic oxidation of Mn²⁺ because the reaction occurs preferentially at pH > 8.0 [46]. Moreover, although anaerobic conditions are favorable for the formation of some Mn compounds, such as rhodochrosite (MnCO₃) [47] or MnS [48], the use of Lept medium, which lacks CO₃²⁻, should not favor this formation because MnCO₃ has been reported to form idiomorphically at pH > 8, CO₃²⁻ > 4.4 × 10⁻¹⁰ mmol L⁻¹ and Eh < 418 mV [48]. On the other hand, we have previously confirmed that in a reaction system with only E. coli JM109 cells and organic substrates, soluble Mn²⁺ failed to be oxidized to Mn⁴⁺ in the absence of MCO [24]. Therefore, the observed aggregates were most likely formed by CotA-catalyzed biogenic Mn oxidation and not by an abiotic process.

3.2. XRD analysis of Mn oxides

XRD assays were performed to verify the types of Mn oxides in the microspherical aggregates. The XRD pattern of the aggregate samples showed six characteristic peaks at 4.22 Å, 3.34 Å, 2.46 Å, 2.37 Å, 2.18 Å and 1.57 Å corresponding to MnO₂ (JCPDS 80-042-1316), four
characteristic peaks at 4.07 Å, 2.55 Å, 2.34 Å and 1.66 Å corresponding to MnO2 (JCPDS 00-039-0375), and three characteristic peaks at 4.03 Å, 2.43 Å and 1.65 Å corresponding to MnO2 (JCPDS 00-044-0142) (Fig. 2). These peaks are consistent with the main characteristic peaks of natural ramsdellites. Therefore, these results confirmed that the microspherical aggregates formed by MB500 were mainly composed of ramsdellites (MnO2).

3.3. Evaluation of the EDC removal efficiencies of the matrices

Two representative EDCs, BPA and NP, were selected as degradation substrates to evaluate the removal efficiency of the three matrices. As shown in Fig. 3, under the experimental conditions (i.e., pH 3.0, 25 °C, 2 ppm each EDC, and 60 min reaction time), all three matrices were capable of rapidly removing BPA and NP in 60 min; however, the activity of MB-MN was greater than those of MN or MB alone, which reflects an associated action of MB500 cells and Mn oxides in this matrix that led to increased EDC removal.

3.4. Effects of pH, temperature, initial EDC concentration and heavy metals on removal efficiency

Fig. S3 shows that a relatively low pH favored BPA and NP removal because all three matrices exhibited the highest relative removal value at pH 3.0, but the effectiveness lasted across pH 3–7, especially for MB-MN. Fig. S4 shows the diverse effects of temperatures ranging from 15 °C to 55 °C on BPA/NP removal by the three matrices. The BPA/NP removal activity of MB-MN was greater than that of MB and MN throughout the measured temperature range and the activity had two relative peak values at 25 °C and 55 °C. Based on these results, in the subsequent treatments, the reaction parameters were set to the values of the optimal pH (pH 3.0) and temperature (25 °C for MB-MN and MB, 55 °C for MN) with a reaction time of 60 min.

Fig. S5 shows that the three matrices have good removal effects on EDCs at different initial concentrations. The absolute amount of EDCs eliminated by the three matrices may not be comparable because the matrix concentration cannot be normalized to a unit activity level; however, it is apparent that these matrices are capable of eliminating a very low level of EDCs (0.1 ppm).

All metal ions (i.e., Cu²⁺, Zn²⁺, Mn²⁺, Mg²⁺, Fe³⁺, and Al³⁺) inhibited the BPA/NP relative removal values of all three matrices at 1 mmol L⁻¹ in 20 min (Fig. S6A and B), which is consistent with the results of previous studies on abiotic Mn oxides [18] and biogenic Mn oxides [21]. However, at a concentration of 0.1 mmol L⁻¹, diverse effects were observed for different metals (Figs. S6C and D). Cu²⁺

Fig. 1. Time course of the whole-cell CotA laccase activity and Mn²⁺-oxidizing activity of the engineered E. coli MB500 cells (A) and a representative SEM micrograph of the aggregates formed in MB500 cultures (B). In (A), the cells were grown in Lept medium for 144 h, and activity measurements were performed using a unit cell density (OD600 = 1.0) at 6 h and 12 h and then every 24 h. In (B), the solid arrows indicate the aggregates, and the dotted arrows indicate the MB500 cells attached to the aggregates.

Fig. 2. XRD patterns of biogenic Mn oxides of the microspherical aggregates formed by MB500 cells.
significantly increased the activities of MB-MN and MB, whereas the other metals had no noticeable effect on any of the three matrices. A low concentration of Cu²⁺ has been reported to enhance MCO enzymatic activity [28], which is consistent with the enhancement of MB and MB-MN activity but not MN activity by Cu²⁺. In contrast with previous studies that demonstrated a substantial decrease in laccase activity in the presence of various metal ions [49], the laccase activity of CotA was not significantly affected by these metal ions, suggesting that the cell platform on which CotA was surface-immobilized facilitates the retention of activity in the presence of these metal ions.

3.5. Detection of EDC adsorption by the matrices

The adsorbed and residual BPA and NP contents were determined from comparably normalized 24 h reactions in solutions containing each EDC at an initial concentration of 1 ppm. EDC adsorption by MB and MB-MN was very limited, with percentages of total BPA or NP adsorption of less than 8% (by MB) and 3% (by MB-MN), while in contrast, MN adsorbed approximately 64% of the total BPA and 69% of the total NP (Fig. 4). Interestingly, all matrices nearly completely eliminated BPA and NP; the highest residual EDCs were less than 2% for MB, 4% for MN and were undetectable for MB-MN. These results demonstrate that the removal of the EDCs by both MB and MB-MN was due to direct biodegradation rather than adsorption, whereas the removal of the EDCs by MN was mainly due to adsorption. However, the low level of residual EDCs in MN indicated that this matrix could also degrade EDCs.

3.6. Degradation product analysis

GC–MS assays were performed to identify the degraded products of ¹³C-labeled BPA and ¹³C-labeled NP by the three matrices. After 24 h of reaction time, only a few peaks above the baseline were visible in any of the supernatant fluids (Fig. S7) with amounts equivalent to approximately 1–5% of the BPA/NP loading and nearly under the detection limit of the GC–MS system, which indicates that these EDCs were mainly due to adsorption by MB-MN or MN. However, when the reaction mixtures with different reaction times were subjected to GC–MS assays, as shown in Table 1, a total of 7 intermediates from BPA-degraded products by MB-MN and a total of 10 intermediates from NP-degraded products by MB-MN (4 intermediates), MB (3 intermediates), and MB-MN/MN (3 intermediates) were identified. Among the identified intermediates, 2,4-bis(1,1-dimethylethyl) phenol has been identified as an intermediate from the BPA-degraded product of chemically synthesized Mn oxides [50], 1,2-dimethoxy-benzene is structurally similar to that of BPA-degraded products by a recombinant laccase [51], and 2-methyl-4-(1,1,3,3-tetramethylbutyl)-phenol and 4-(1,1-dimethypropyl)-phenol from the NP-degraded products are analogues to NP isomers [52]. Due to the rapid degradation of EDCs by MB-MN and the late sampling time, the identified products in the early stage of degradation reaction are less. Therefore, some other intermediates might still remain unidentified. Nevertheless, the occurrence of these intermediates verified the biodegradation by MB-MN or MB as a result of the joint processes of cellular enzymatic catalysis and cooxidation reactions of the catalytic CotA on the cell surface and Mn oxides.

The 24 h degradation products of ¹³C-labeled BPA and ¹³C-labeled NP by MB-MN were further analyzed for the occurrence and concentration of ¹³CO₂. As expected, ¹³CO₂ was detectable in the degraded products of both ¹³C-labeled BPA and ¹³C-labeled NP. In contrast with the background level of ¹³CO₂ in the control sample, approximately 80% equivalent ¹³C-labeled BPA and approximately 84% equivalent ¹³C-labeled NP were converted to ¹³CO₂ (Fig. 5).

3.7. Detection of the superoxide radical contents

The total superoxide radical (SR) contents of the BPA-degradation and NP-degradation reaction mixtures were monitored during the 24 h reaction period with the three matrices. Relatively high initial SR concentrations were recorded in the MB-MN and MN samples (Fig. 6A and B), which was consistent with some previous investigations that
Table 1
GS-MS identified intermediates of BPA- and NP-degradation by MB-MN, MB or MB-MN.

<table>
<thead>
<tr>
<th>Degraded product</th>
<th>Mw</th>
<th>Degraded by</th>
<th>EI characteristic ions (m/z)</th>
<th>Retention time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degraded intermediates of BPA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254 MB-MN</td>
<td>254, 223, 191, 177, 148, 113, 85</td>
<td>53.868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212 MB-MN</td>
<td>41, 57, 169, 196, 212</td>
<td>24.943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192 MB-MN</td>
<td>146, 131, 117, 103, 89, 75, 61, 46</td>
<td>16.324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 MB-MN</td>
<td>176, 133, 119, 103, 88, 73, 57, 43</td>
<td>7.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162 MB-MN</td>
<td>162, 133, 119, 103, 89, 73, 59, 43</td>
<td>17.741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147 MB-MN</td>
<td>132, 117, 89, 75, 58, 44</td>
<td>16.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144 MB-MN</td>
<td>144, 129, 101, 83</td>
<td>18.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-dimethoxy-benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226 MB-MN</td>
<td>226, 155, 127, 57, 41</td>
<td>16.771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226 MB</td>
<td>226, 155, 127, 91, 77, 57, 41</td>
<td>15.643</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184 MB</td>
<td>156, 132, 117, 101, 87, 72, 58, 43</td>
<td>7.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 MB</td>
<td>170, 155, 142, 125, 113, 101, 77, 55, 41</td>
<td>14.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 MB-MN</td>
<td>170, 155, 140, 127, 111, 97, 83</td>
<td>15.554</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
revealed the occurrence of large amounts of SR along with the process of Mn oxide formation [41]. Interestingly, following the degradation reaction processes, the MN- and MB-produced SRs from either the BPA-degradation (Fig. 6A) or NP-degradation reaction (Fig. 6B) sharply decreased, whereas MB-MN-produced SRs maintained relatively high levels in both the BPA- and NP-degradation reactions throughout the time period.

3.8. Bioassays of estrogenic activity

The incomplete degradation or simple adsorption of EDCs may lead to new or transferred hazards to environmental organisms and humans due to estrogen toxicity. The model eukaryote *C. elegans* was used to evaluate the effect of the degradation products and the postreaction matrices on nematode fecundity to investigate the estrogenic activity of the products of degradation by the three matrices. Pure BPA and NP alone exhibited apparent estrogenic activities, whereas both the degradation products and postreaction matrix of MB-MN exhibited no such activities (Fig. 7A and B). In contrast, the degradation products by MB and the postreaction MB cells exhibited comparably higher residual estrogenic activities. No residual estrogenic activity is observed for the MN degradation products; however, the postreaction MN matrix exhibited activity. These findings are consistent with the results presented in Fig. 4, in which significant adsorption activities were observed in all postreaction MN matrices.

3.9. Repeated EDC biodegradation performance of MB-MN

Three consecutive rounds of biodegradation by MB-MN were performed to evaluate the repeatability of BPA and NP biodegradation. MB-MN induced high degradation rates of two EDCs, with degradation rates in excess of 98%, 91%, and 86% in the consecutive first-, second- and third-round degradations, respectively (Fig. 8). Furthermore, the degradation activity was at least 94% when a simple culturing process was used. These results demonstrate that the MB-MN matrix has high performance in terms of repeatability and regeneration.

4. Discussion

The data presented in this study suggests that the dynamic oxidation system comprising a composite of biogenic Mn oxides and engineered bacterial cells with surface-immobilized CotA exhibited strong oxidative capacities for degrading the tested EDCs. The engineered cells oxidatively degraded the EDCs to specific intermediates depending on the activity of the surface-displayed CotA, which overcame the mass transfer limitations or passive diffusion of the substrates to increase degradation efficiency. The Mn oxides played several roles in the

Table 1

(continued)

<table>
<thead>
<tr>
<th>Degraded product</th>
<th>Mw</th>
<th>Degraded by</th>
<th>EI characteristic ions (m/z)</th>
<th>Retention time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5,6-trimethyloctane</td>
<td>162</td>
<td>MB-MN</td>
<td>148, 140, 89, 72, 58, 41</td>
<td>6.817</td>
</tr>
<tr>
<td>2-methyl-norne</td>
<td>156</td>
<td>MB-MN</td>
<td>156, 141, 125, 113, 101, 83, 41</td>
<td>15.674</td>
</tr>
<tr>
<td>p-tert-butylphenol</td>
<td>132</td>
<td>MB-MN</td>
<td>132, 117, 72, 58, 41</td>
<td>6.701</td>
</tr>
<tr>
<td>1,2,4-trimethyl-cyclohexane</td>
<td>132</td>
<td>MB-MN/MB</td>
<td>132, 117, 72, 58, 41</td>
<td>6.522</td>
</tr>
<tr>
<td>1,1,3-trimethyl-cyclohexane</td>
<td>132</td>
<td>MB-MN</td>
<td>132, 117, 72, 58, 41</td>
<td>6.701</td>
</tr>
</tbody>
</table>

a) Occurs in both MB-MN and MB degradation reactions.
b) *, C atom with 13C stable isotope.
reaction, including degrading the EDCs through SR-mediated oxidation, rapidly adsorbing the EDCs, providing favorable catalytic microenvironments, converting EDCs to easily degraded isomers [53], and acting as stable platforms to facilitate the oxidative reactions of both the engineered bacterial cells and the Mn oxides themselves. In addition, the MN matrix adsorbed the engineered cells during aggregate formation to embed or attach the cells (Fig. 1B) and free CotA proteins that were released from cells lysed during cell culture, which led to Mn oxidation and aggregate formation. Thus, the composite MB-MN likely possessed different active constituents with oxidative potential: the engineered cells embedded or attached to the aggregates, the biogenic Mn oxides, the free CotA proteins, and the various SRIs, as identified above (Fig. 6). While MB alone exhibited only incomplete degradation of the EDCs and MN alone exhibited adsorption activity rather than direct degradation during the reaction course, the composite MB-MN associatively combined the degradation capacities of both MB and MN to form an integrated metabolic pathway of EDCs.

Several previous investigations have manifested higher degradation levels of BPA, NP or other organic matters under acidic conditions by all four crystal forms of MnO2 (i.e., α-, β-, γ-, and δ-MnO2) that were chemically synthesized (Table S1). Among these Mn oxides, δ-MnO2 exhibited the highest degradation efficiencies, which were attributed to its high oxidation degree, large specific surface area and abundant surface holes [18]. Certain biogenic Mn oxides have been characterized as hexagonal symmetrical weak crystal layered minerals, which are closest to chemically synthesized δ-MnO2 and birnessite [54]. These biogenic Mn oxides typically exhibit additional characteristics, such as small particle sizes, unordered accumulation along the C axes, high valences, and several vacancies in their octahedral structures [55].
Similarly, the MB-MN developed in this study was an amorphous, weakly crystalline mixture consisting of various Mn oxides (MnO2, Mn3O4, Mn3O4, and MnO) that mainly consisted of ramadellite mixing with other oxides such as birnessite, and crystal forms that mainly consisted of γ-MnO2 and δ-MnO2 with abundant octahedral vacancies, which are presumed to be conducive to the adsorption of organic matters [56] and the capture of SRs [57]. Moreover, the crystallinity of this weakly crystalline Mn oxide can be enhanced by aging or ion exchange and is likely converted to a triclinic birnessite or a torodorokite analog [58]. Thus, these structural features confer MB-MN significant potential as an oxidizer and a sorbent, which enables a coordinated and effective degradation of BPA and NP.

On the other hand, similarly to other E. coli strains, the engineered MB harbored other oxidoreductases in addition to the surface-displayed laccase CotA, such as superoxide dismutase, and peroxidase. As shown in Fig. S2, MB alone exhibited a degradation effect on BAP and NP to some extent, which might be attributed to the joint degradation of these enzymes. We presume that the primary roles of MB cells include the following aspects: (i) serving as an oxidizer for the formation of Mn oxides and for oxidizing the organic substrates; (ii) serving as a nucleating center for the formation of Mn oxide aggregates as confirmed in a previous Mn2+-oxidizing bacterium with surface-displayed MCO [24]; and (iii) serving as an initial donor of SRs because SRs are likely generated during the growth of MB cells and during the oxidation process of CotA [59]. Interestingly, several previous investigations have confirmed that certain abiotic Mn oxides had only limited degradation efficiencies on organic substrates without an oxidizing agent, such as peroxymonosulfate, peroxydisulfate, and hydrogen peroxide [60–62], which strongly contrasts the significant degradation efficiencies of MB-MN without such oxidizing agents, thereby indicating the significance of MB during the degradation process of MB-MN. It is noteworthy that the cellular enzymes of MB could also exert a suppressing effect on the radicals. The relatively low detectable level of SRs in MB (Fig. 6) is presumably because the elimination consequence of certain cellular enzymes including superoxide dismutase, peroxidase, etc. [63]; however, the fate of the SRs in MB-MN is different because the SRs can be captured by Mn oxides following generation, which then serve as functional degraders towards the BPA and NP. Thus, under the associated degradation of MB and MN, BPA and NP were completely degraded.

Although a relatively prolonged culture process is required for the formation of MB-MN, the significant degradation capability enabling mineralization of BPA and NP indicated one of its intrinsic advantages over other abiotic Mn oxides (Table S1).

The high level of SRs in the MB-MN reaction mixtures (Fig. 6) suggests a correlation between the SRs and the BPA-degradation and NP-degradation. Many previous investigations have demonstrated that active oxygen radicals were able to degrade or mineralize various refractory organic pollutants through advanced oxidation processes (AOPs) (for reviews, see [64,65]). In these AOPs, photochemical and/or electronic radiation or catalysts and those combined with certain oxidants are used to produce highly active oxygen radicals; these radicals lead to various reactions (e.g., addition, substitution, electron transfer, and bond breaking) with target compounds and oxidatively degrade these toxic compounds into less toxic or nontoxic substances, or even completely convert them into CO2 and H2O through joint oxidation by the engineered cells and the Mn oxides.

It is noteworthy that the as-prepared MB-MN composite had a favorable performance under acidic conditions but only limited degradation activity on organic substances in alkaline solutions. However, acidic wastewater is widely present in a variety of industrial fields, such as ammunition manufacture, pharmacy, mining sites, steel manufacture, electroplating and phosphorous industries [69]. On the other hand, given the ability of laccase-like enzymes to degrade synthetic dyes and organic pollutants [25,26], as well as the ability of Mn oxides to degrade a variety of organic pollutants and remove heavy metals [16,17], the potential applications of this composite could extend to other fields, including industrial wastewater processing, heavy metal detoxification, and biotransformation of environmental pollutants.

5. Conclusions

The current study demonstrated for the first time the complete biodegradation of two representative EDCs, BPA and NP, using a composite composed of biogenetic Mn oxides and engineered bacterial cells with surface-immobilized CotA. Mn oxidation by the CotA laccase on the surface of the target cells led to the formation of microspherical aggregates containing Mn oxides. X-ray diffraction analysis confirmed that the aggregates were primarily composed of ramadellite. Under optimized reaction conditions, the composite degraded the EDCs into the final product, CO2, and thereby completely eliminated their estrogenic activities. Based on its repeatable, rapidly recoverable performance, adequate physical strength, and the requirement for only normal reaction conditions, the developed composite may be particularly valuable for the biotreatment of EDC-containing wastewaters in large-scale or continuous bioprocesses.

Acknowledgments

The authors are grateful to Dr. Chansong Zhao for his technical help with the XRD experiments and data analysis, Prof. Ming Sun for providing the C. elegans wild-type strain N2 (Bristol), and Dr. Donghai Peng for experimental guidance on the bioassays. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 31777108 and 31570123) and was supported by the Fundamental Research Funds for the Central Universities of China (Program no. 2662015PY189) and a grant from the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China (Grant No. AMKJF2017006).
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tree.2019.01.062.

References

Z. Zhang et al.

Chemical Engineering Journal 362 (2019) 897–908

