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Background: Advances in nutriology have suggested the colon as a superior site for nutrition absorption.
Nutraceuticals, including phytochemicals, probiotics, etc., have received great attention owing to their health-
promoting functionalities for colon. However, these compounds generally exhibit poor solubility or are sensitive
to the harsh environment of food processing and gastrointestinal tract, thus, lowering their bioavailability and
compromising their envisioned benefits. Therefore, there is a need to develop suitable delivery systems to protect
active agents from these severe conditions and to maintain their functions in the colon.

Scope and approaches: Colonic delivery of nutraceuticals has emerged as a new impetus for researchers interested
in developing functional foods. This review presents an overview mainly about current studies relevant to dif-
ferent colon-targeted vehicles for nutraceuticals. The physiological conditions of colon and the corresponding
principles for constructing vehicles are first reviewed to better understand the mechanisms of different vehicles.
Relevant methods for evaluating the efficiency of vehicles are also summarized. Last, current limitations and the
future scope for the colonic delivery of nutraceuticals are identified and addressed.

Key findings and conclusions: Recently, significant progress has been made in colon-targeted delivery of nu-
traceuticals and different evaluation methods were applied to assess the efficacy of vehicles. However, advances
in the colonic delivery of nutraceuticals are still in their early stages and multi-unit vehicles with great efficacy
need to be further investigated. Furthermore, to fully mimic the real conditions of gastrointestinal tract, more
systematic and precise in vitro/vivo testing should be explored to make sure that a fully function of nutraceuticals
enters the colon.

1. Introduction

Advances in the nutrition and metabolism have promoted a deep
understanding of the interactions between the human health and the
colon. Recently, the colon has been regarded as the ideal absorption site
for improving the bioavailability of functional agents due to the distinct
advantages the colon presents, such as its near neutral pH, long transit
time, and reduced enzymatic activity (Amidon, Brown, & Dave, 2015).
In this regard, oral, colon-targeted delivery systems have been put
forward that resist the chemical and enzymatic degradation taking
place in the upper gastrointestinal (GI) tract and release their loaded
biocomponents in the colon (Pawar, Darekar, & Saudagar, 2013).
Currently, significant progress has been made in developing colon-tar-
geted drug delivery systems (Naeem et al., 2020). Moreover, this system
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has been shown many advantages, including minimizing systemic side
effects, improving bioavailability, and delivering the drugs in their in-
tact forms (Kumar, Ali, Kaldhone, Shirode, & Kadam, 2010; Kumar,
Chandra, & Gautam, 2013). However, the application of these advances
to the food industry is still in its early stages. As is known that the
bioavailability of bioactive components is the main factor that must be
considered in designing functional foods. Therefore, the colonic de-
livery of bioactive compounds has emerged as a new goal for re-
searchers interested in developing functional foods.

Nutraceuticals are an emerging food category defined as dietary
elements that have health promoting effects beyond their basic nutri-
tional values (Ting, Jiang, Ho, & Huang, 2014). Bioactive phytochem-
icals and probiotics are the two predominant nutraceuticals that have
received substantial attention in the field of food industry. The
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incorporation of nutraceuticals may provide a simple way to develop
functional foods that can have physiological benefits or reduce the risk
of disease (Bezbradica et al., 2013). Bioactive phytochemicals, which
are derived from various natural sources such as plants, vegetables and
fruits, possess diverse bioactivity in the colon, including the reduction
of inflammation, inhibiting colon cancer, and promoting the growth of
probiotics (Prakash, Gupta, & Sharma, 2012; Sun, Zhang, Zhu, Lou, &
He, 2018), Thus, they benefit colon health. However, their potential
functionality has not been fully realized because they are easily de-
graded during storage or within the GI tract. Consequently, there is a
strict requirement to develop food-grade delivery systems that en-
capsulate and protect active agents until they reach the colon. Ad-
ditionally, microbial communities colonizing in different regions of the
human colon contribute nutrients and energy to the host through the
fermentation of non-digestible dietary components (Duncan & Flint,
2013). The balance of microbial species is essential for maintaining
healthy metabolism and immune function. But the disturbance in this
balance can have negative influence on health, resulting in inflamma-
tion and metabolic disorders that are contributory factors in in-
flammatory bowel disease, diabetes, and cancer (Ruan, Engevik,
Spinler, & Versalovic, 2020). Probiotics are live microorganisms ad-
ministered as food supplements to improve the microbial balance in the
colon and to confer major health benefits such as modulation of the
immune system, enhanced healing of damaged GI mucosa, improved
nutrition and antagonism against pathogens (Ashraf & Shah, 2014;
Olveira & Gonzalez-Molero, 2016; Tejero-Sarifiena, Barlow, Costabile,
Gibson, & Roeland, 2012). Hence, consumption of probiotics has been a
rising trend due to consumer awareness of their beneficial effects. It is
noteworthy that good probiotic viability and activity are considered
essential for optimal functionality. Nevertheless, survival of these pro-
biotics during transit through the GI tract can be problematic and need
to be taken into consideration since the harsh GI environment (e.g., low
pH and high bile salts) can damage bacterial cells. Herein, colon-tar-
geted delivery systems seem to be an attractive approach for delivering
probiotics to address this limitation.

Recently, a significant driver in functional food innovation has been
the exploration of colon-targeted delivery systems to help the nu-
traceuticals to resist the harsh conditions of GI tract and to fully func-
tion in the colon. However, to date, there are no reviews focused on the
progress of colon-targeted delivery of nutraceuticals. Therefore, this
paper provides an up-to-date overview of current studies relative to
different colon-targeted vehicles for nutraceuticals. To better under-
stand the action mechanism of different vehicles, the physiological
conditions of colon and the corresponding principles for constructing
the vehicles are first reviewed. Additionally, relevant methods for
evaluating the efficiencies of different vehicles are summarized. Last,
the limitations of current studies and the scope for future research are
identified and addressed. It is hoped that the present review will pro-
vide better understanding of current progress in the area of colon tar-
geted delivery of nutraceuticals and encourage the industry to further
explore and adopt suitable techniques for the development of functional
foods.

2. Anatomical and physiological characteristics
2.1. Colonic anatomy

The human GI tract is primarily divided into the stomach, the small
intestine and the large intestine. Its anatomical and physical features
were shown in Fig. 1(Patel, Bhatt, Patel, Patel, & Patel, 2011). The large
intestine, which starts from the distal end of the ileum to the anus, is
just over 1.5 m long and divided into three parts, the colon, the rectum
and the anal canal. The colon, 5-7 cm in diameter, is the upper 1.5 m of
the large intestine, beginning at the ileocaecal valve and ending at the
rectosigmoid junction (Satheesh Madhav, Singh, & Ojha, 2012). The
colon itself is composed of the caecum, the ascending colon, the hepatic
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flexure, the transverse colon, the splenic flexure, the descending colon
and the sigmoid colon.

2.2. Colonic pH

The pH of GI tract varies significantly among different regions, and
can be used as an approach for constructing colon-targeted delivery
system. In fact, there is a pH gradient in the upper GI tract, which
ranges from pH 1.2 in the stomach to pH 6.6 in the proximal small
intestine to pH 7.5 in the distal small intestine (Reddy, Malleswari,
Prasad, & Pavani, 2013). The pH then decreases between the end of the
small intestine and the colon due to the presence of short chain fatty
acids arising from fermentation of polysaccharides by the human mi-
crobiome but then gradually increases once again in the colon (Gupta,
Gnanarajan, & Kothiyal, 2012). By knowing this pH, a pH dependent
colon-targeted system was investigated by researchers. The basic me-
chanism of this system is similar to the use of enteric coatings or em-
ploys of pH dependent polymers. Such systems exploit the generally
accepted view that the pH of the human GI tract increases progressively
from the stomach, small intestine at the site of digestion and then in-
creases in the distal ileum (Singh, Sharma, Pooja, & Anju, 2014). Thus,
colon-targeted delivery systems fabricating with pH dependent poly-
mers are able to withstand the lower pH values of the stomach and of
the proximal portion of the small intestine to protect the active in-
gredient from these acidic pH values, then break down at the neutral or
slightly alkaline pH values present in the terminal ileum and release
their bioactive components. In fact, the pH ranges between 1.5 and 2.0
in the stomach during fasting but the intake food results in an increase
in stomach pH (Gerloff et al., 2013; Zhang, Wang, Li, Ho, Li, & Wan,
2016). Colonic pH ranges also exhibit variability between individuals
due to hydration level, GI disease state, food intake, and microbial
metabolism. Additionally, some polysaccharide-based bioactive com-
ponents may also alter the pH of colon. Lactulose, for example, can be
fermented by colonic bacteria to produce lactic acid, reducing colonic
pH. The large variation of the pH values in the GI tract is well estab-
lished (Patel et al., 2011). Hence, even though a pH dependent delivery
system can protect an active substance in stomach and proximal small
intestine, it may dissolve in the lower small intestine prior to reaching
the colon, resulting in the poor site-specificity of bioactive components.

2.3. Transit time

Gastric emptying time plays an important role for colon-targeted
delivery systems, especially in time-controlled delivery systems. Gastric
emptying times are highly diverse and primarily depend on whether the
body is fed or fasted, and the size and density of the dosage form
(Kumar & Kumar, 2011). The arrival of an oral dosage form to the colon
is determined by the rate of gastric emptying time and the small in-
testine transit time. The transit time of the small intestine is relatively
constant (approximately 3-4 h) and is generally unaffected by the
nature of the products (Qureshi, Momin, Rathod, Dev, & Kute, 2013).
The transit times of dosage forms vary in different regions of GI tract.
Colonic transit is slow and influenced by a number of factors such as
diet, stress, dietary fiber content and disease. Colonic transit time in
patients with ulcerative colitis was shorter (about 24 h) compared co-
lonic transit time in a healthy body (about 52 h) (Hebden, Blackshaw,
Perkins, Wilson, & Spiller, 2000). While diarrhea increases colonic
transit, constipation decreases it (Krishnaiah & Khan, 2012). Human
activity can also affect dosage form motility in the colon, with the in-
active state of sleep delaying the colonic transit. For a colon-targeted
delivery system, the lag time should equate to the time taken for the
orally dosed system to reach the colon. Thus, it is usually assumed that
a 5 h lag time is sufficient for colon delivery. However, the colon arrival
time of dosage forms cannot be predicted accurately, since the gastric
emptying time is inconsistent between individuals, resulting in poor
colonic availability (Cole et al, 2002). Additionally, other
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Fig. 1. Anatomical and physical features of the human GI tract.

disadvantages also exist for time-controlled colon-targeted system.
First, gastric emptying time is different between different subjects and
is dependent on the type and amount of food intake; Second, gastro-
intestinal movement, especially the peristalsis or contraction in the
stomach can influence the transit time of dosage form. Third, some
diseases, such as irritable bowel disease (IBD), carcinoid syndrome,
diarrhea and ulcerative colitis (UC), can accelerate transit through
different regions of colon (Fischer, Siva, Wo, & Fadda, 2017). There-
fore, this delivery system is not ideal for colon delivery. However, the
system developed by the combination of two or more different types of
mechanisms might be an attractive approach to solve this problem. For
example, research combining pH dependent and time-controlled sys-
tems into one dosage can overcome the variation of gastric emptying
time and can improve the colon specificity, results indicate that a pH/
time dependent delivery system can prevent the burst release under
acidic pH conditions but show sustained release at colonic pH (Naeem
et al., 2015).

2.4. Colonic microflora and enzymes

The entire human GI tract contains a large number of anaerobic and
aerobic bacteria. However, the upper small intestine has relatively
small amounts of bacteria (10* CFU/g) compared to colon (10! CFU/
g). Over 400 different species have been found in the colon, 20-30% of
which are in the genus Bacteroides (Choudhury et al., 2012;
Raghuvanshi, Goswami, & Kothiyal, 2014). Several hydrolytic and re-
ductive metabolizing enzymes, which are common in the gut micro-
biota residing in high numbers in the colon, can play an important role
in triggering the release of the bioactive compounds in the colon (Dhir,
Kahlon, & Kaur, 2013). Herein, microflora activated delivery systems
are based on the exploitation of the site-specific metabolic activity of
microflora resident in colon. Colonic enzymes are not only capable of
degrading the coating matrices, but they can also break the linkages
between active agent and matrices, and thereby release active compo-
nents. For example, polysaccharides (e.g., chitosan, pectin, alginate,
starch, etc.) that are resistant to the gastric and intestinal enzymes but
can be digested by enzymes produced by the colonic microbiota after
arriving in the colon, are commonly employed as rate-controlling ma-
trices or linkers for constructing colon-targeted delivery systems (Kotla,
Gulati, Singh, & Shivapooja, 2014). When the vehicle passes through
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the GI tract, it remains intact in the upper GI tract where very little
microbial activity is present. The colonic bacteria carry out a variety of
metabolic reactions and fulfill their energy needs by fermenting various
types of substrates such as disaccharides, trisaccharides, and poly-
saccharides (Tuck, Muir, Barrett, & Gibson, 2014). In general, this
system is more site-specific than other colon-targeted delivery systems
because of the presence of these enzymes only in the colon. While, this
approach also has limitations since polysaccharides can dissolve or
swell in an aqueous environment due to their hydrophilic properties. To
address this limitation, some structural modification or other vehicle
strategies are generally applied to realize the full potential of these
polysaccharides for colon-targeted delivery systems (Shukla & Tiwari,
2012).

3. Current vehicles for colon-targeted delivery of nutraceuticals

Nutraceuticals need to be protected from the harsh environment of
the upper GI tract and then be released in the colon to attain successful
colonic delivery and elicit their functionality to improve their bioa-
vailability. In this regard, the subsequently section provides detailed
and systematic reviews of successful vehicles based on different me-
chanisms for the colon targeting of bioactive compounds, especially
phytochemicals and probiotics that may provide a major impetus to
food researchers in the development of function food.

3.1. Vehicles for colon-targeted delivery of bioactive phytochemicals

Phytochemicals have a long history of significant applications in
commercial industries including cosmetics, food aids and additives.
(Bourgeois et al., 2016; O'Shea, Arendt, & Gallagher, 2012). They
possess numerous therapeutic benefits such as anti-obesity effects,
cardiovascular effects, antioxidant activity, immune enhancement and
anti-inflammatory effects. Plant-derived phytochemicals are advanta-
geous for the treatment of colon cancer with additional benefit of im-
proving overall health and these nutritional compounds might provide
better treatment while showing few adverse effects (Clifton &
Kaplowitz, 2012). Nevertheless, their applications are generally limited
owing to disadvantages such as poor solubility, instability and low
bioavailability (Shakeri & Sahebkar, 2016). Hence, there is a critical
need to develop alternative vehicles to overcome the above limitation.
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Different colon-targeted vehicles have been recently explored to im-
prove the bioavailability and optimize the release in the GI tract of the
phytochemicals, potentially promoting the health.

3.1.1. Nano-based vehicles

Nanotechnology is a promising tool in the field of food safety and
nutrition and it has been shown as an efficient approach for improving
the bioavailability of the bioactive components (Dima, Assadpour,
Dima, & Jafari, 2019; Wang et al., 2014). There is a huge opportunity
for the development of diverse products with functions because of the
properties of nanomaterials such as size, shape, encapsulation effi-
ciency, aggregation state, and solubility. Nanoparticulate can be syn-
thesized from carbohydrates, proteins, and lipids, as well as other
natural and synthetic polymers and they can exist in different forms
depending on the method used for their preparation (Esfanjani,
Assadpour, & Jafari, 2018; Katouzian & Jafari, 2016). In general, a
scientific definition of nano-size systems in the pharmaceutical area
involves particle sizes of less than 1000 nm (Assadpour & Mahdi Jafari,
2019). Moreover, Jafari, Assadpoor, He, and Bhandari (2008) also
suggests that nanoparticles be defined as having dimensions below
1000 nm in the field of encapsulation. Recently, nanomaterials have
been suggested as attractive vehicles for constructing colon-targeted
delivery systems. They also offer other advantages including improved
efficacy, reduced toxicity, and enhanced biodistribution (Manikandan,
Kannan, Manavalan, & Sundresh, 2011). Nano-based vehicles can po-
tentially overcome barriers to colon-targeted delivery of the loaded
components (Lamprecht, 2010). In this case, nanoparticles are stable in
the GI environment and can protect an encapsulated active substance
from the harsh pH conditions and enzymatic degradation. Nano-sized
carriers can accumulate active compound within a colon due to en-
hanced epithelial permeability and retention effects, therefore in-
creasing the residence times at the target site and improving the bioa-
vailability of a bioactive compound (Lei et al., 2016). To date, nano-
vehicles have been extensively utilized in constructing colon-targeted
delivery systems for improving the bioavailability of the loaded com-
pounds.

Curcumin, a major active ingredient of turmeric, which belongs to
the polyphenol family, shows no discernable toxicity and exerts anti-
inflammatory, antioxidant, antimicrobial, and anti-hyperlipidemic ac-
tivities, thus attracting the focus of many functional food researchers
(Hussain et al., 2017). Curcumin has also been widely used as a func-
tional food-derived factor in the food industry (Rafiee, Nejatian,
Daeihamed, & Jafari, 2019a). Unfortunately, its low water-solubility as
well as chemical instability makes curcumin difficult to incorporate into
the food products (Ahmed, Li, McClements, & Xiao, 2012). Moreover, it
is easily degraded and influenced by the food matrix (e.g., lipids and
proteins) that can compromise its bioavailability (Zou et al., 2016). In
this regard, nano-based carriers have been employed to tackle these
problems. Various nanocarriers have been investigated for the en-
capsulate of curcumin (Rafiee, Nejatian, Daeihamed, & Jafari, 2019b).
In particular, several colon-targeted nano-vehicles have been explored
to improve the bioavailability of the curcumin. Beloqui et al. (2014)
synthesized a polymeric pH-sensitive nanoparticle based on the PLGA
and Eudragit S100 and evaluated its feasibility for the colon targeting of
curcumin. In vitro studies on encapsulated curcumin demonstrated en-
hanced curcumin permeation across Caco-2 cell monolayers as com-
pared to curcumin in suspension, thus, significantly increasing the
bioavailability of curcumin. In vivo studies showed that myeloperox-
idase (MPO) activity and tumor necrosis factor-a (TNF-a) secretion was
reduced. These nanoparticles appear to provide specific curcumin de-
livery to the colon. Similarly, colon-targeted delivery systems for other
bioactive phytochemicals are presented in Table 1. Challenges in fab-
ricating functional foods incorporated with bioactive compounds lie in
stabilizing these in food processing and within the GI tract. Recently,
Liu and his co-workers constructed a colon-targeted nanocapsule based
on self-aggregates of octenylsuccinate oat f-glucan and systemically
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verified the workability of this system by evaluating the thermal sta-
bilities, in vitro stabilities, release profiles, and in vivo bioavailability of
the loaded curcumin (Liu et al., 2017). Results demonstrated that cur-
cumin in the nanocapsule showed better stability in storage and under
thermal treatment than in its free form. Moreover, curcumin was tightly
accommodated in the capsule through the upper GI tract, while it ra-
pidly escaped as it reached the colon. The loaded curcumin generated
higher values of peak concentration (Cpq) and area under the curve
than its free form, illustrating that this nanocapsule was a promising
vehicle for stabilizing the bioactive compound in food processing and
storage, facilitating their colon-targeted delivery and enhancing their
bioavailability.

Additionally, apart from nanoparticles, there are other types of
nanocarriers used for constructing colon-targeted delivery system. For
instance, nanofibers fabricated by electrospinning have attracted in-
creasing attention on encapsulating and delivering bioactive com-
pounds (micromolecular as well as macromolecular ingredients) in re-
cent years (Feng et al., 2017; Wen, Zong, Linhardt, Feng, & Wu, 2017).
Electrospun fibers provide proper protection of the bioactive com-
pounds due to its excellent properties, such as large surface area to
volume ratio, and high porosity. Furthermore, electrospinning can be
able to directly encapsulate the bioactive compounds into the electro-
spun fibers under the mild conditions, thus, making it an especially
suitable technique for encapsulating the labile and sensitive com-
pounds. Recently, in order to verify the feasibility of developing a mi-
croflora activated delivery system for bioactive compounds by elec-
trospinning, a novel core-shell structured nanofilm for the delivery of
protein to the colon was developed by coaxial electrospinning using
bovine serum albumin (BSA) as a model (Wen, Feng, et al., 2017). First,
the BSA was incorporated into the chitosan nanoparticle prepared by
ionic gelation, and then the coaxial nanofilm was fabricated using al-
ginate as shell layer and the BSA-loaded chitosan nanoparticle as core
layer. Results demonstrated that 75% of BSA was released in the sti-
mulated colonic fluid, moreover the electrospinning condition had no
significant effect of the structure of BSA. Therefore, electrospinning
represents a promising microflora activated colon-targeted delivery
system for bioactive compounds. In the following studies, Wen and her
co-workers investigated the feasibility of this system for the micro-
molecular (quercetin) and macromolecular (phycocyanin) bioactive
compounds (Wen et al., 2019; Wen, Zong, Hu, Li, & Wu, 2018)
(Fig. 2B). They found that the core-shell nanofiber could release most of
the bioactive compounds in the colon with the retention of their
bioactivity. In addition, triaxial electrospinning has recently emerged as
a new technique in the field of encapsulation and controlled release.
The schematic of the tri-axial electrospinning devices is shown in
Fig. 2B, it can be seen that the fibers obtained had one additional layer
than the fibers prepared by coaxial electrospinning, which may provide
an extra protective layer for the loaded bioactive compounds to resist
the harsh environmental conditions. Therefore, future studies could be
carried out to develop high-efficiency colon-targeted delivery systems
though this technique and thus promote the application of electro-
spinning in the functional food industry.

3.1.2. Micro-based vehicles

Microencapsulation has been proposed as a promising technology
for entrapping and delivering bioactive compounds in the field of food
science (Corréa-Filho, Moldao-Martins, & Alves, 2019). Micro-vehicles
ranging in diameter from 1 to 1000 pm, including microparticles, mi-
crospheres, microcapsules and microbeads, have been investigated for
constructing colon-targeted delivery systems. These vehicles have great
advantages for use in delivery systems, such as for protecting the active
substance from degradation, realizing sustained/controlled release, and
reducing toxicity and side effects (Nidhi et al., 2016). Microparticulate
delivery systems developed based on different mechanisms, have been
investigated for colon-targeted delivery of bioactive compounds.

Madhavi, Madhavi, and Jithan (2012) developed the colon-targeted
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Fig. 2. A) Different vehicles used for colon-targeted of nutraceuticals; B) Schematic illustration of electrospinning (coaxial and tri-axial) and electrospraying for
constructing colon-targeted vehicles (Wen, Zong, Hu, Li. & Wu, 2018; Yu et al., 2015; Zaeim et al., 2017).

-
T

curcumin microspheres employing the Eudragit S100 as a pH depen- Curcumin exhibited sustained released into the systemic circulation
dent polymer and evaluated the in vitro and in vivo properties of this after oral administration of the optimized vehicle. Moreover, the mi-
system. Results of the in vitro release studies revealed that the optimized crospheres delivered most of loaded curcumin (79%) to the colon and
vehicle showed an 8-fold enhancement of curcumin aqueous solubility. could be used effectively for colon-targeted curcumin delivery. Other
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similar microparticulate carriers used for colon-targeted curcumin de-
livery have been reported (Gogu & Jithan, 2010; Hwang & Shin, 2018;
Jyoti et al., 2016; Karade & Jadhavb, 2018; Pereira et al., 2013; Sareen,
Jain, Rajkumari, & Dhar, 2016; Sharma, Khan, Singh, & Bhatnagar,
2013; Singh, 2011; Xiao, Si, Zhang, & Merlin, 2015). Resveratrol, a
polyphenol naturally occurring in a number of fruits and other food
products, has been extensively studied and approved for its potential in
promoting the colon health and for its beneficial properties, including
anti-inflammatory, anti-obesity and anti-carcinogenic effects (Sebastia,
Montoro, Leén, & Soriano, 2017). However, resveratrol can be rapidly
absorbed through the upper gastro-intestinal tract after administration
and only a small amount of resveratrol can reach the colon, resulting in
a low bioavailability. Considering this, a colon-targeted delivery system
is a great option to improve its bioavailability. A pectin-based micro-
particle was designed by using the zinc ions and chitosan as the cross-
linking agent for colonic-specific delivery of resveratrol (Das, Ng, & Ho,
2011). This microparticle was designed by using colonic microflora as a
triggering mechanism since the pectinolytic enzymes of colonic mi-
croflora can selectively degrade pectin. Indeed, one limitation is that
solubility of pectin in upper GI fluids makes it unsuitable as a colon-
targeted carrier. In this aspect, divalent cations, such as Ca>* and Zn>",
can be used to produce stronger and more water-resistant gels. Here,
chitosan was utilized to interact with pectin through electrostatic and
hydrogen bonding to form a polyelectrolyte complex. In vivo results
indicated that colonic microflora activated microparticles, prepared
under optimized vehicle conditions, afford the colon-targeted delivery.

To our knowledge, however, most colon-targeted delivery systems
developed using a single mechanism have achieved limited success. In
contrast, systems based multiple mechanisms show fewer adverse ef-
fects and can be better suited for delivering the bioactive compounds to
the colon. Zhang et al. (2011) developed a Eudragit S100 coated cal-
cium pectinate microsphere by the combination of pH dependent and
microflora activated system and investigated it as a colon specific de-
livery for curcumin. In vitro release studies indicated that this micro-
sphere could effectively protect curcumin in the upper GI tract, and the
curcumin was released specifically in the colon. Similarly, coating
chitin microspheres with ethyl cellulose could further decrease the re-
lease of anthocyanins in the GI tract, achieving the release of most of
the loaded anthocyanins in the colon (Wang, Li, & Li, 2017). Likewise,
other bioactive ingredients such as bovine lactoferrin (Balabushevich
et al., 2014), kenaf seed oil (Chew, Tan, Long, & Nyam, 2015), fish oil
(Chatterjee & Judeh, 2015), icariin (Wang, Wang, Zhou, Gao, & Cui,
2016), lappaconitine (Xu, Zhong, Liu, Xu, & Gao, 2011), and folic acid
(Ahmad, Qureshi, Magsood, Gani, & Masoodi, 2017) could be protected
during their passage through GI tract using various microparticulate
carriers.

Hydrogel beads represent another alternative micro-sized dosage
form that has been widely investigated as a carrier system to en-
capsulate, protect and release the bioactive compounds. These are
generally formed by two steps, the formation of biopolymer and the
cross-linking of the biopolymers (Mcclements, 2017). For encapsula-
tion, hydrophilic nutraceuticals are mixed with the biopolymer solution
prior to formation of the hydrogel beads, whereas the hydrophobic
nutraceuticals rely on the opposite approach. Different particle-forma-
tion methods have been used to fabricate hydrogel beads, including
injection, emulsion templating, and electrostatic complexation. The
most commonly applied biopolymers for preparing hydrogels are
polysaccharides and proteins. Many polysaccharides, including algi-
nate, pectin, carrageenan, gum and cellulose, are dietary fibers and not
degraded in the upper GI tract. These biopolymers are commonly uti-
lized to prepare colon-targeted hydrogel beads, which remain intact in
the upper GI tract but disintegrate in the colon releasing loaded in-
gredients (Bannikova, Rasumova, Evteev, Evdokimov, & Kasapis, 2017;
Keppeler, Ellis, & Jacquier, 2009; Kumar, Rijo, & Sabitha, 2018;
Olukman, Oya, & Solak, 2012; Sookkasem, Chatpun, Yuenyongsawad,
Sangsen, & Wiwattanapatapee, 2017). However, one similar limitation
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that also exists is that swelling or premature degradation of beads in the
upper GI tract tends to adversely influence the efficiency of the colonic
delivery system when hydrogel beads designed by using one single
polysaccharide. An important approach that has been popularly
adapted to address this challenge is to add a second polymer. Kumar,
Bhatt, and Sharma (2016) designed and evaluated an oral, colon-tar-
geted delivery based on the biodegradable sodium alginate. However,
sodium alginate hydrogel beads showed low entrapment efficiency and
burst release of the loaded compounds. Guar gum was included with the
alginate matrix together with a cross-linking agent to address the
above-mentioned problems. They found that presence of guar gum and
glutaraldehyde increased the entrapment efficiency and prevented the
rapid dissolution of alginate at the higher pH of the intestine, ensuring
the expected colon-targeted release. Hydrogel beads based on one or
more polymers can also serve as carrier systems for the target release of
other phytochemicals, including anthocyanins, resveratrol, mango seed
kernel extract, cherry laurel polyphenol extracts and ginger extract (Das
& Ng, 2010; Lotfipour, Mirzaeei, & Maghsoodi, 2012; Nithitanakool,
Pithayanukul, Bourgeois, Fessi, & Bavovada, 2013; Oehme, Valotis,
Krammer, Zimmermann, & Schreier, 2011; Prezotti et al., 2018; Cakir &
Giilseren, 2017). Besides the aforementioned approach, other micro-
based vehicles, which were designed by combining different mechan-
isms or different dosage vehicles, have been reported. For example, a
multi-particulate system designed by the combination of the microflora
activated and pH dependent mechanisms was shown to be workable for
colon-targeted ginger extract delivery (Deol & Kaur, 2013). In vitro and
in vivo studies showed that the alginate beads coated with Eudragit
S100 could successfully avoid the release of entrapped ginger extract in
the upper GI tract since Eudragit S100 dissolves at pH values above 7.0.
Hence, these beads were a more suitable and effective dosage form to
target release the Ginger extract to colon. Other research also found
that curcumin-loaded, colon-targeted microbeads prepared by the
combination of chitosan and Eudragit S100 could successfully deliver
curcumin to colon and notably enhance the bioavailability of curcumin
(7-fold), which demonstrated the superiority of vehicles combining
different mechanisms (Karade & Jadhavb, 2018).

3.1.3. Pellets

Pellets are multiple-unit solid dosage forms commonly character-
ized by a spherical or pseudo-spherical shape and a smooth surface
(Bipin & Jagdish, 2017). The techniques for producing pellets describe a
size-enlargement process and currently include direct pelletization (by
high shear mixer of fluidized bed), hot melt extrusion (HME) or wet
extrusion  (extrusion/spheronization) (Palugan, Cerea, Zema,
Gazzaniga, & Maroni, 2015). Pellets find the specific application in
preparation of modified release oral dosage forms when formulated as
either matrix system or coated reservoirs. Matrix systems are composed
of an active compound closely dispersed in inert or swellable excipients
and exhibiting controlled release. The reservoir system contains the
bioactive ingredient in its core and then was coated with one or more
layers that are able to better control the release kinetics. Thus, the re-
lease profiles are attributed to the thickness and other properties of the
coating. Pellets coated with layers based on different mechanisms have
been developed and their potential applications in colon targeting have
been extensively evaluated. For instance, double coated pellets, loaded
with caffeine, were constructed based on the pH sensitive polymers
(Eudragit FS and Eudragit RL) for colon-targeted delivery and the Eu-
dragit FS coated pellets were also prepared for comparison. Results
demonstrate that the double-coated pellets could ensure a prolonged
release of caffeine in the distal small intestine and the colon (Bott et al.,
2004). In another similar study, apigenin, a plant flavonoid, was also
encapsulated in a pH sensitive pellet for colon-targeted delivery (Papay
et al., 2017). Additionally, pellets with a time dependent film coating
were also designed and examined as a colon-targeted delivery system.
In this case, a lag phase, which corresponds to the brief intestinal transit
time, is essential for a successfully colon-targeted delivery. However,
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because of the unpredictable residence time of solid substrates in the
stomach, the coating needs to be shielded form gastric fluid. It is also
particular important that their performance should be not affected by
physiological variables and enzymatic breakdown. Hence, several at-
tempts have been made to overcome these issues. For example, pellets
coated with rupturable, erodible or permeable layers shown an intrinsic
delayed release (Del Curto et al., 2014; Yadav, Survase, & Kumar,
2011). Furthermore, naturally occurring polysaccharides (pectin, algi-
nate, chitosan, guar gum and amylose) are generally utilized as a mi-
croflora activating pellet coating for colon-targeted delivery of phyto-
chemicals. Such polysaccharides have remarkable advantages,
including renewability, good biocompatibility, low toxicity, and bio-
degradability. Among these, pectin is one of the widely studied coating
materials for the designing pellets. But the solubility and swelling
properties in aqueous is a major disadvantage that hinder the applica-
tion of pectin as a colon-targeting biopolymer. Therefore, a consider-
able thickness of coating layer is often used. A rate controlling polymer,
high molecular weight hydroxypropyl methylcellulose (HPMC), has
also been employed as a coating layer to control the release of cur-
cumin. Results demonstrated that the ideal vehicle exhibited a
minimum release of curcumin at pH 1.2 and maximum release at pH
6.8, and an increased amount of curcumin appeared in the blood stream
when compared with the use of pure curcumin, illustrating that this
type of pellet could be a good candidate for colonic delivery of bioactive
curcumin (Sureshkumar et al., 2009). Hiorth, Versland, Heikkil4, Tho,
& Sande (2010) developed a pellet using a combination of chitosan and
pectin for colon-targeted delivery of riboflavin. The coating, containing
chitosan, was capable of hindering the release of the active ingredient
in an enzyme-free fluid (pH 6.8). In addition, pectin can also be re-
placed with alginate and, thus, further improve coating performance. In
pellets based on chitosan, designated for colonic delivery, it is necessary
to apply a protective coating, since chitosan is soluble in an acidic
medium. In this aspect, the colon-targeted pellet was fabricated by
combining chitosan with natural biopolymers such as alginic acid and
its salts or other polysaccharides, instead of using methacrylic acid
copolymers or semisynthetic cellulose derivatives. The results of this
study illustrated that pellets coated with alginate and chitosan ex-
hibited a lower amount of rutin dissolution in the upper GI tract when
compared with that in the colon (12-14%, 87-89%, respectively), de-
monstrating that this pellet could be a promising carrier for colon-tar-
geted delivery of a natural product (Rabiskova et al., 2011). Besides
pectin and chitosan, other natural or modified polysaccharides, such as
amylose and starch acetate, have also been established as a microflora
activated colon-targeted delivery system (Li, Liu, Chen, & Yu, 2011; Pu
et al.,, 2011). Tamarind seed polysaccharide, which is extracted from
the kernel of seeds of Tamarindus indica, has been investigated to de-
velop a colon-targeted delivery system. Kshirsagar and Pandit (2017)
reported that pellets prepared by carboxymethyl tamarin seed poly-
saccharide could be used successfully for colon-targeted delivery of
curcumin, and in this case, a solid dispersion was used to increase the
dissolution of curcumin. Results indicate that the dissolution and ab-
sorption of curcumin could be increased by 1.5- and 2-fold, respec-
tively, and, thus, an improved oral bioavailability of curcumin was
obtained.

3.1.4. Tablets

Tablets, which are commonly prepared by wet granulation methods,
have also been employed for developing colonic delivery systems.
Taking tablets as a colon-targeted delivery system exhibits several ad-
vantages, such as simple manufacturing methods, industrial relevance,
and convenience (Newton & Lakshmanan, 2014). Several types of ta-
blets based on different mechanisms or combined with other vehicles
have been proposed. Tablets based on single mechanism may have
limited success in colon targeting, while the microflora activated de-
livery system seems to be more site-specific than vehicles based on
other mechanisms (Ilango et al., 2010). Regarding this problem, a great
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deal of research has been devoted to design the microflora activated
colonic delivery systems by applying different polysaccharides. But
colon-targeted delivery systems, developed by applying one poly-
saccharide, have poor efficacy. For example, tablets of curcumin have
been investigated by employing sodium alginate and hydroxypropyl
methylcellulose (HPMC) as a carrier. Tablets with sodium alginate as a
compression coat in the absence of HPMC K15M were not able to retard
the curcumin release in stimulated gastric and intestinal fluids
(Modasiya & Patel, 2012). Similar systems prepared by the combination
of alginate and Eudragit L100 or pectin and Eudragit S100 were applied
to deliver the curcumin to the colon (Butte, Momin, & Deshmukh, 2015;
Kumar et al., 2018). Furthermore, other efforts have also been made to
obtain a better colon-targeted delivery system by the combination of
different trigging mechanisms. Caddeo et al. (2014) designed the chit-
osan/xanthan gum/Eudragit L tablets for quercetin based on pH de-
pendent and microflora activated delivery mechanisms. The quercetin-
loaded microparticles were compressed into the tablets, coated with pH
sensitive polymer. Results showed that the microparticle tablets ex-
hibited resistance to acidic condition, allowing a complete release of
quercetin in colonic environment. This study also indicated that the
tablets prepared by the combination of different trigging mechanisms
or vehicles were a promising, easy, reproducible and cost-effective oral
dosage form for the targeted and sustained delivery of quercetin to the
colon.

3.2. Vehicles for colon-targeted delivery of probiotics

It is well known that the desired effect of probiotic can only be
conferred when a minimum level of 10° -10” CFU/g of food product be
eaten in sufficient amounts to afford a daily intake of 108-10° CFU
(Modzelews-kakapitula, Klebukowska, & Kornacki, 2007). There has
been a rising interest in producing functional foods containing en-
capsulated probiotics, like cheese, yogurt, ice cream as well as choco-
late in the recent years. However, the shelf life of most probiotic pro-
ducts is short even though they are stored at low temperature. In regard
to this problem, encapsulation technologies have emerged as promising
prospects for introducing the viable probiotic cells into foods (Terpou
et al., 2019). Given that encapsulation matrix can provide a barrier to
protect living probiotics against the harsh environmental conditions
during processing, storage and GI passage, various encapsulated ve-
hicles have been developed to improve the viability of the probiotic
cells and deliver the living cells to the target site, consequently pro-
moting the health.

3.2.1. Nano-based vehicles

Nanocarriers have been suggested as a promising alternative in
encapsulating micromolecular compounds because of their inherent
advantages. However, their application in bacterial encapsulation is
less well explored since the microbial cells are quite large (1-4 um)
(Hug, Khan, Khan, Riedl, & Lacroix, 2013). Two strategies are currently
successfully used to encapsulate the probiotics that apply a nanosized
polymer matrix.

First, a Layer-by-Layer (LbL) technique, initially introduced in
1990s, represents a versatile procedure involving the absorption of
oppositely charged polyelectrolytes on surfaces. LbL has been in-
troduced for the formation of nanocages on living microorganisms.
Diaspro, Silvano, Krol, Cavalleri, and Gliozzi (2002) investigated the
feasibility of encapsulating living cells using the LbL method. In addi-
tion, researchers also reported that Lactobacillus acidophilus, coated by
the self-assembled polymers, could resist adverse conditions, such as
low pH, bile salts and digestive enzymes (pepsin, pancreatin) (Priya,
Vijayalakshmi, & Raichur, 2011). In another study, the encapsulation of
Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was examined
using block-copolymers of poly(acrylic acid) and pluronic as the
coating materials. The survivability of encapsulated cells in different
conditions, such as freeze drying, storage in stimulated gastric and
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intestinal fluid were also evaluated, and the results demonstrated that
the coated microorganisms were well-protected against these adverse
conditions (Quintana et al., 2017). Unlike other methods, in this ap-
proach the bacterial cell was coated sequentially in suspension. Another
special characteristic of LbL is that the encapsulation exhibits a per-
meability to molecules of size smaller than 5 nm, such as mono-
saccharides, disaccharides, amino acids and dipeptides or tripeptides,
which can provide the main source of carbon and energy for the growth
of the loaded probiotic cells. However, the encapsulation should also
prevent bacteriophage, bacteriocins or harmful enzymes from per-
meating. In summary, the LbL technique is a promising method to en-
hance the viability of loaded cells during processing, storage, and
transit through the GI tract.

In addition to the LbL technique, electrospinning has also been
proposed as a feasible route to encapsulate bacterial cells and even
virus particles (Amna, Hassan, Pandeya, Khil, & Hwang, 2013; Klein
et al., 2009). It is noteworthy that the electrospinning process has no
significant influence on the viability of the loaded cells by virtue of the
mild processing conditions and the stability of the loaded cells are
generally enhanced (Feng et al., 2018). The encapsulation of probiotic
cells often leads to beaded nanofibers as the result of the widening of
the nanofibers due to the relatively larger size of loaded cells. The
confocal image also showed that the probiotic cells were successfully
encapsulated in the nanofibers. Electrospinning has been successfully
investigated as an efficient colon-targeted delivery system and ex-
hibited good colon-specific properties. A novel double-layered vehicle
was fabricated by coaxial electrospinning that was capable of im-
proving the resistance of encapsulated probiotic bacterial cells against
the low pH and bile salt conditions (Feng et al., 2020). Hence, it is
foreseeable that the incorporation of probiotic cells into nanofibers will
offer an effective means of delivery of living probiotic cells in appro-
priate levels to the colon and maintain their viability in simulated
gastric intestinal juice, thus, modulating the balance of intestinal flora
and promoting good health.

3.2.2. Micro-based vehicles

Microparticles are an attractive vehicle has been extensively ex-
plored for protecting probiotics from the harsh conditions and im-
proving their survivability (Teoh, Mirhosseini, Shuhaimi, & Manap,
2011). Recently, the protection efficiency of the encapsulated B.
longum, prepared by using extrusion and emulsion techniques, against
the sequential exposure to simulated gastric and intestinal juices, re-
frigeration storage and heat treatment was evaluated. In this case,
Eleutherine americana was used as an encapsulation agent since the E.
ameracana and the related oligosaccharide extract showed resistance to
low pH and partial tolerance to human a-amylase. They also found that
the encapsulated cells prepared by extrusion method, survived better
under the adverse conditions than those protected by the emulsion
technique. Moreover, the viability of the encapsulated cells was better
than free cells held at 65 °C for 15 min. This work substantiated the
microencapsulated probiotic cells with E. americana offers an effective
delivery of probiotics to the colon and maintains their survival in food
products (Phoem, Chanthachum, & Voravuthikunchai, 2015). Addi-
tional micro-vehicles utilized for encapsulating and colonic-targeting of
probiotics using polysaccharides and proteins are summarized in
Table 2. It is noteworthy that electrospraying has received considerable
interest as a method for encapsulating probiotics (Fig. 2B) (Gomez-
Mascaraque, Morfin, Pérez-Masid, Sanchez, & Lopez-Rubio, 2016;
Zaeim et al., 2017; Libran, Castro, & Lagaron, 2017). Since other
technologies, such as extrusion, emulsification, and spray drying,
usually involve the use of polymer cross-linking or high temperatures
and cell viability can be compromised. In contrast, the electrospraying
can produce microcapsules without excessive use of heat, thereby
producing microcapsules possessing high cell loading with good cell
viability. Electrospraying can also be employed to produce core-shell
microcapsules that can maximize the protection of encapsulated
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microorganisms. For example, alginate-zein core-shell microcapsules
helped to improve the survival of encapsulated probiotics in stimulated
gastric fluid up to 5-fold (Laelorspoen, Wongsasulak, Yoovidhya, &
Devahastin, 2014). In regard to this technique, probiotic loaded micro-
vehicles could be prepared in either a single step or in two steps
(Fig. 2B) (Zaeim et al., 2017). Hence, this technology provides a po-
tential alternative for delivering viable bacterial cells to the colon and
helps in preserving their survival during transit of the gastric and in-
testinal tract.

3.2.3. Pellets

In recent years, many attempts have been made to explore different
microencapsulation vehicles to enhance the survivability of the loaded
probiotic cells in the harsh environmental conditions. Most en-
capsulation techniques, including drying, extrusion, and emulsion/in-
terfacial polymerization, provide a physical barrier allowing en-
capsulated bacterial cells to resist adverse conditions. However, some
significant issues still exist in terms of the currently available techni-
ques for probiotic encapsulation. For instance, microorganisms may
come in contact with aqueous and/or organic solvents or be exposed to
high temperatures during the fabrication processes and this can com-
promise the cell viability of the final products. However, pellets, de-
signed based on a dry polymer powder coating technique, has been
used to encapsulate several bioactive components. However, the use of
pellets for encapsulating probiotic cells is somewhat less explored.
Pellets have been successfully used to encapsulate the L. acidophilus and
B. animalis by taking hydroxypropyl methylcellulose acetate succinate
(HPMCAS) as a coating material. A markedly higher survival rate of the
loaded probiotic cells in the acidic medium and during storage were
observed compared to free cells and marketed products prepared by a
conventional enteric coating process (Park, Lee, Jun, Son, Choi, et al.,
2016). In another study, probiotic cells containing powders were first
compressed into a pellet, and then coated with a combination of sodium
alginate and HPMCAS. The results demonstrated that the survivability
of encapsulated cells in these pellets was significantly improved
(10°-10° fold) compared to free cells. Furthermore, an in vitro study
showed that this system could be used in colon-targeted delivery of
probiotic cells (Lone, Dhole, & Borhade, 2013).

3.2.4. Tablets

Tablets are another promising dosage form for probiotic en-
capsulation and have been employed to improve the stability and sur-
vival of the entrapped bacterial cells. Tablets employ different func-
tional polymers, and are attractive due to their ease of production and
administration, good acceptance, stability on storage and large-scare
production properties. Furthermore, the effects of vehicle and proces-
sing parameters, including compression force, matrix-forming ex-
cipients on the bacterial viability have been investigated. Klayraung,
Viernstein, and Okonogi (2009) reported that the proportion of matrix
forming excipients in tablets and the compressing force both affected
the tensile strength and disintegration as well as the survival of the
bacterial. Tablets produced with high compression force exhibited high
bacterial cell viability. Chan's group demonstrated that bacterial via-
bility decreased when the compression pressure reached 90 MPa (Chan
& Zhang, 2002). Silva et al. (2013) demonstrated that there was no
significant influence of the detrimental effects for compaction forces
higher than 9.8 kN (P > 0.05). Tablets are commonly fabricated
through two strategies, either directly compressing the probiotic cells
with polymer matrix or incorporating the probiotic cells loaded parti-
cles inside the tablet. In the first approach, the process simply carried
out by compressing the probiotic cells with one or more matrix forming
components. The tablet obtained improves bacterial stability during
storage as well as in gastric fluid. Some reports also confirm that pellet
coated with the polymers exhibit desirable properties including gastric
protection of probiotic cells and their delivery to the colon. For ex-
ample, Calinescu and Mateescu (2008) described a hydrophilic tablet



Trends in Food Science & Technology 102 (2020) 203-222

K. Feng, et al.

(6102)
nu[) pue ‘rue ‘ewny ‘1ooyez ‘Teqby

(6102) T8 9 nH

(£100)
eIUARPURIN % ‘TueySeuwnq ‘pewaly ajed

(£10T) dsed pue 93IM 9p UBA “IaujjeH

(9102) Suep\ pue ‘vewydy ‘UNS ‘UNg ‘NI

(#10T) OI0UIpRH pUB ‘M3 ‘MO3YD

(€102) Te 32 esnog

(£10¢) 010UIPEH puUE MOSYD

(¥T02) 'Te 19 Aoy[IUIS

(¢102)
3ren pue ‘nys ‘vosndo ‘o) ‘UAYD

(2102) PyeyS
(1102) An{suefiomyy
pue ‘sonododurererey) ‘siz}1o0zJ, 0o

(#102) Te 32 BYsAouBAL

(8002) Te 32 ury

dunsaul pue
UDBWOIS Y] JO SUONIPUOD PAIB[NWIS 3Y) UT PAIBGNIUT USYM [BATAINS 12YSTY o)
9AeY 0) U2A01d 2I9M SPEIQOIdIW PAILOD ) PIMOYS ABSSE 11D "dM YIIM PaIeod
9[qnOop S19M YIIYM ‘SpBIqOIdIW HTY/NSD 94} 01Ul pale[nsdedus 919m so101qoid
*UOo[0d 3} IZIUO[0D

PUB SUOTIIPUOD 3SISAPE 3} dAIAINS 0] son01qoid ay) 10j JaLLred Juistwoid e

se pasoddns st 3] ‘19e1) [D Joddn S Ul SUONIPUOD Ysey 341 JO UONINNSIP Y} WOIJ
s[[92 parensdesus ayy 193101d 01 3[qe sem (EQDED) proeIue SurureIuod sPSOIIN
*S[[92 9313 03 paredwod

uayMm 19Y31y APuedYIuSIs 919M SUONN[OS I[es J[Iq pue JLNSeS PIIR[NWIS U S[[9D
paremsdedus Jo AN[IqeIA Y3 1ey) PI[LASI SINSIY "Apnis s1y) ut pAy3iySiy a1om
A19AT[9p 10[03 d1101q01d 10] A2BO1JS it pue SpnIed [9301pAY Speid-pooj [PAou Y
*S[[92 931 Y3M paredwod Uo[0d JO UOHRZIUO[OD 19113q B 10§ PIMO[[R SPIYA
padofaasp oy, ‘Hd 21msed mo[ a3 woiy s[[22 dnoiqoid oy 199101d ApUsOLYD
pInod spnIedomniu BIIS-HTY [[PYs-2102 3y} ul sonoiqoid jo uonemsdesuy
A19A179p d1101qo1d UT XLITRW 3[NSABIOIIUI SATIIVYID

ue aaoxd W3rw ST, 'Y g e (Tw/ngD 0] $1°g) sunsajur a81e[ pue (Tu/NgD
3o 0g°g) aunsaul [[ews ul yloq s[nsdedoniw HTY Ul JBY) URY) 19119q PIAIAINS
srnsdesomiw (Z:1) (SYVd) a1ejAnedjod eN:0Ty ul pajensdesus onoiqoid
+90m( d1nsed ur uey) 3dm[ [eUnSAIUT pIajeNWIS

9 ur s[[d 10w Jursesal a[yold asesfar [22 ewndo ayy ssassod sansded
dT-DTV YL, '9doueIs[o) pe 3y asoxdurr AJuo sansded [X-DTY "9oUBIS[0}

ssoms pasoidwi 11qryxa sansded gT-9Tv 9y ‘sansded A[uo-HTy ay3 01 paredwio)
*sa[yoId ases[ar [[92 aaoxdwr sansded (HTy) 21eurdfe o) pappe sung [X pue g1
*Kyiqera o0 o Surstdwod

NOYIIM dleurd[e YIIm pasn 3q ued s1auwA[od-0d 10 sjuelds101doL) “sareydsororur
/3nsded01o1ur JO 92UBISISAIT ) ISBIIDUT UL swa)shs uneod Suriojdxs

S3IPNIS J9YLIN, "U01d33101d [[30 JO SnowAUOUAs jou st uorensdedusordru
SIWNAUWIOS *SUONIPUOD 10k} [H paje[nuils 0] pue ssadoid uonensdedusororur
a1 yloq 0 ‘urens dnoiqoxd JueISIsaI Jsour ) Sem gI-dg SYPWIUD ‘g

“Anniqea

28e10)s pue a[yod Isearar Jus[[adxa 1Y) 0) Arrewtid Suimo ‘sonorqoad a1
-w[yoIq 10j wa)sAS AISAT[SP S[qeINS B st paAIds sa[nsded DTy PaIeod-uesoiy)
*(8/n4D ©'30[ 89°7) S[[97 931 JO ey ueyy

(8/n4D °1801 ££'6-02"9) 19ys1y Apueoyrudis sem ursdod Sururejuod som( drnsed
paje[nuuls Ut y ¢ I0j uoneqnour Ja)ye sapnIedordrur ay) ur peof anoiqoid ayy,
*BSODNUI DTUO[O0D

JO [9powW 0.714 U1 3} 0] BLIvIOR] d1oiqoid Jo Junoure 1Y31y A[payIew ISAT[PP 0}
JoAejouowr [er[ayIda d1UO[0D X IIN-6ZLH UO PIBIISUOWSP SEM WIA)SAS Pajeod Y],
‘uonduNy dno1qod 1oy JUSDLYNSUT

‘S[[92 IAT] TW/NAD 80T 9'% YIIM UOJ0D JY) PIYILAI BLISIIR] 9314 "PINJJ [RUNSIIUT
1) U SI7ES 3[Iq JO ddUdsqe pue aduasaxd a1} ur ‘A[oandadsar ‘s[[ad dAT] ui/NAD 07
€T’/ PUE 8§°9 JO JUNOD S[CEIA B [IIM UO[0D ) paydea1 wmn.iupld T paremsdeduy
*Hd Teunsajur 03 amsodxa uodn asearas Suojord

pmyy o1sed paje[nuIls Ul 942.q g JO [EATAINS ) SISBIIIUT UBSOIYD IIM Suneo)
“uojod

S} U S[[2D J[qEIA JO dsed[aI pajadie) pue uoneAIdsaid 2A1I29)J9 10§ Tenuajod
SMOUS 125D2 T Pa1eMsdedusoIdIul JO J[2IYaA PUB POYIdW UoneNsdedusoIdrur ay ],
*S[[D [eLI910Bq dAI[ JO AISAT[p [e1o dnnaderayl ay3 10y saynsdedordrur
DTV-NSD-DTV Jo Tenuajod oY) 9210JUTaI SINSAI S, "A[[eULIOU M1

pue paAlaIns er1a)oeq paddenus pue pInjj [eUNSIUIOINSES paje[nuIls Ul 3[qels
pue 1oBIUT UTRWRI SaMNsded0IdTW (DTY-NSD-DTV) 91eUuIS[e-UesolIyd-a1eurd[y

<

<<

<<

<<

<

SpEaqOIIN

19801

21oydsoIdIA

SnIedodIA

JnsdedonIN

SnsdedonIN

SponIedodIA

SmsdesonIN

SpanIedodIA

JmsdesomT

JmsdesonIN

9nsdesoIdTN

anIedomIN

ansdesoIdTN

wmpiq g

L5 wmpnuaaopnasd g

wnupjupyd T

DY snsouwnyd “T

ZVIN wnpjup)d T

DD SNSOUWDYL SNJIIDGOIIDT

2194 SpuiuD uma1qopyig pue I snydopiop

ST19Dq0IDT ‘97T 195D9DIDd STJI9DQOIIDT ‘10-10SDI T

DD SNSOUWDYL SNJIIDGOIIDT

19509 T

912dQ Mama.L T

8S0T DD.Ld wnuvupid snjj1apqoIdDT

242.4q WNLPIDQOPLG

195D STJ)19DQOIIDT

S HAno’ g

dM ‘NSD DTV

SpRRILY DTV

o1e1S ‘undsd

BOIIS DTV

srejAneijod eN ‘OTV e

NSD ‘wn3 (1X) ueyiuex
‘swn3 (g7) ueaq ISNO0T ‘DY e

BIVA)

NSD ‘ueusageire) ‘OTY e

DIV (dM) urroid LSym e

NSD PoIB[OTYL NSO DTV e

YoIe)s JURISISAY DTV @

NSO ‘OTV

DTV ‘NSO

(NSD) uesouyd (91v) Uiy o

NUAIRJY

Jnsay

aPIGRA

urexns onoiqoid

eusyew Sunensdesuy

*so1101qo1d Jo AISAT[Op Pa1a81e)-uojod 10j pareSTISoAUT SI[IYDA dlenonIedoIdur JUSIHIQ

T 31qeL

213



K. Feng, et al.

Trends in Food Science & Technology 102 (2020) 203-222

In Vitro Dissolution Test Models
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Fig. 3. Schematics of different in vitro simulated media to assess the release behaviors of obtained vehicles.

employing a carboxylated (carboxymethyl high amylose starch, CM-
HAS) and an amino excipient (chitosan) for probiotic colon delivery.
This system relies on two mechanisms to obtain a desirable release
profile of the loaded probiotic. First, the tablet has a compact structure
in the gastric acidity, since CM-HAS (Na™) changes the cation for a
proton, enhancing water uptake and generating the polymeric swelling
and matrix dissolution. The fast dissolution of the matrix makes it im-
possible to achieve the colon-targeted delivery. In this case, Calinescu
and the co-workers reported that the association of chitosan with CM-
HAS can be used to address this limitation. Chitosan is a linear poly-
saccharide that is widely used for delayed liberation of active agents in
colon since it can resistant the enzymes in duodenum and the lower
intestinal tract, but be degraded by the colonic bacterial enzymes.
However, chitosan can dissolve in gastric medium owing to the proto-
nation of its amino groups. Hence, the CM-HAS/chitosan tablet was
further coated with CM-HAS polymer to assure a good stability and cell
viability in the gastric medium, allowing Lactobacillus rhamnosus to be
delivered to the colon. Succinylated f-lactoglobulin, a novel functional
tablet excipient, was examined in another study for protection the acid-
sensitive bacteria during transit in the upper gastro-intestinal tract
(Poulin, Caillard, & Subirade, 2011). A tablet made of native f-lacto-
globulin did not ensure the cell survival in the gastric medium. How-
ever, grafting the carboxylic acids by succinylation modified the pro-
tein's physico-chemical properties, and this tablet made of -
lactoglobulin could result in survival of up to 10” CFU after 2 h in the
gastric medium and a good stability over a period of 3 months (4 °C).
This study demonstrated the potential of succinylated food proteins as
novel excipient-carriers for probiotics to be delivered alive and in high
numbers in the lower GI tract.

A desirable strategy involves tablets prepared by combination of
two different vehicle approaches to further enhance the stability and
viability of the embedded cells. For example, microparticle embedded
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tablets have been proposed for colonic delivery and have been applied
to encapsulate probiotics. Silva and co-workers first encapsulated the
probiotic (Lactobacillus paracasei L26) in whey protein microparticles
and then these microparticles were incorporated in a tablet. This ve-
hicle showed the potential of tablets for the colonic delivery of viable L.
paracasei L26 cells in simulated gastric fluids with a very good per-
centage of cell survival (Silva et al., 2013). In another study, a multiple-
unit tablet was developed and the improvement of storage stability,
acid tolerance and in vivo intestinal protective effect was investigated.
They first prepared probiotic-loaded pellets with hydroxypropyl me-
thylcellulose acetate succinate, and explored the optimized preparation
conditions, then compressed the pellet into the tablet. They found that
this multiple-unit tablet showed significantly improved storage stability
under ambient conditions over 6 months and a stronger resistance to
acid medium compared to the native pellet. In vivo studies in rats also
illustrate that repeated intake of this multiple-unit tablet exhibited
superior properties when compared to unformulated probiotics or
marketed products in rats (Park, Lee, Jun, Son, & Kang, 2016). There-
fore, this multiple-unit tablet is an excellent alternative vehicle for
delivering viable cells and benefiting the human health.

4. Evaluation of colon-targeted delivery system

A successful colon-targeted delivery system is one that can be cap-
able of maintaining the integrity and activity of the bioactive com-
pounds in the physiological environment of stomach and small intes-
tine, but releases the active ingredients in the colon. To verify the
colonic efficiency of the vehicles, various in vitro/in vivo evaluations
studies have been proposed to investigate the release mechanisms,
transit behavior of the dosage forms as well as the physiological action
of the encapsulated bioactive compounds.
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4.1. In vitro evaluation methods

Currently, there are no standardized evaluation techniques for in
vitro assessment of colon-targeted delivery systems, since an ideal in
vitro model should possess the conditions of GI tact, including pH, vo-
lume, stirring, pressure, bacteria, enzymes and other food components.
Furthermore, these conditions are easily affected by several factors
(e.g., diet, physical stress, disease, etc.), making it more difficult to
design a standard in vitro evaluation model. In the past years, several in
vitro models, while less than ideal, have been applied and are presented
in Fig. 3.

4.1.1. In vitro dissolution tests

The dissolution test is probably the simplest and widely used
method for evaluating oral release delivery systems including the colon-
targeted delivery systems. This method is considered reproducible,
scientifically justifiable and biorelevant. Generally, four types of dis-
solution apparatus are recommended in the USP to evaluate different
dosage forms: basket, paddle method, reciprocating and flow-through
cell (Emami, 2006). Dissolution tests of colon-targeted vehicles in
various media simulating physiological conditions (e.g., pH conditions
and transmit times) at various locations in the GI tract have been re-
ported. For example, pH 1.0 for 2 h simulate gastric conditions, pH 6.8
for 3 h to simulate the jejunal region of the small intestine, and pH 7.4
to simulate the large intestine (Barba, Dalmoro, D'Amore, & Lamberti,
2013). In addition, kinetic studies have been conducted to investigate
the release mechanisms of the bioactive agents loaded in different
colon-targeted vehicles. The corresponding equations and principles of
five mathematical models, including zero-order model, first-order
model, Higuchi model, Ritger-Peppas model and Weibull model, are
shown in Table 3 (Dodov et al., 2009; Sinha, Ubaidulla, & Nayak,
2015). Regression analysis is then conducted for the release data in
different simulated fluids and the model with the highest correlation
coefficient (r) is considered the best fitting.

4.1.2. Modified in vitro dissolution tests (containing enzyme)

For several in vitro tests, the simulating solutions simply consist of
buffers with different pH values (Petrovic et al., 2013). However, these
may not accurately reflect the true release performance in the human GI
tract. Some researchers have carried out in vitro release studies in buffer
medium containing enzymes, such as pepsin, trypsin, pancreatin and -
glucosidase to evaluate the release profiles of embedded components
(Bokkhim, Bansal, Grondahl, & Bhandari, 2015; Liu, Ye, Liu, Liu, &
Singh, 2013; Wen, Wen, Huang, Zong, & Wu, 2017). The amount re-
leased over a period of time is typically viewed as directly proportional
to the rate of carrier polymer degradation. The release amount of the
loaded bioactive compounds in enzyme-enriched media is generally
higher than that in buffers without enzymes. The addition of -gluco-
sidase serves to mimic the enzymes generated by the microorganisms

Table 3
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present in the colon, hence, the enzyme enriched simulation media are
often viewed as an effective way of evaluating the release profiles of
different colon targeted vehicles, especially for those based on micro-
flora activated mechanisms.

4.1.3. Modified in vitro dissolution tests (containing enteric lysate)

The GI tract is very complex so that simulated media cannot accu-
rately represent the real conditions even with the presence related en-
zymes. Hence, besides the above-mentioned in vitro dissolution tests
and in vitro dissolution test (enzyme), researchers often directly carry
out release studies by adding the animal cecal contents (Rajyalakshmi &
Muzib, 2015) or human fecal slurries (Vieira et al., 2013) into the re-
lease medium. Ilango et al. (2010) developed a colon-targeted tablet
using okra polysaccharide as a microbially triggered material. These in
vitro release studies were carried out in dissolution medium containing
rat cecal contents. A group without rat cecal contents was used as a
control. In this study, the cecal contents were obtained from the rats
pretreated with okra dispersion for 7 days to induce enzymes acting on
okra polysaccharide. These researchers found that the maximum re-
lease was 98% at 10 h with rat cecal matter, but only 47% without rat
cecal matter after 10 h. Therefore, the composition of the stimulated
release medium had a significant influence on the release of the loaded
bioactive compounds, particularly in microbially triggered delivery
systems. The result was similar to that of another study conducted by
Zhang et al. (2011). This study compared the release behaviors in the
media only containing enzymes. The results showed that the cumulative
amount of curcumin released from the microsphere in the presence of
1% rat cecal contents after 24 h was about 90%, while only 84% in the
media with pectinase and 80% without cecal content and pectinase.
These results also demonstrate that it is crucial for researchers to select
a suitable medium to accurately evaluate the release profiles of the
bioactive compounds in the colon-targeted vehicles.

4.1.4. Cell studies

The use of cell-based in vitro models allows the evaluation of
bioactive ingredients permeability under conditions close to the in vivo
or the cellular uptake properties of the loaded components (Li, Cui,
Ngadi, & Ma, 2015; Zhang et al., 2012). For example, a bioactive pro-
tein, ovalbumin, was entrapped in three different polymeric nano-
particles, pH-dependent nanoparticles, bioadhesive nanoparticles, and
PLGA based nanoparticles (Coco et al., 2013). The transepithelial
transport of these different nanoparticles was investigated using Caco-2
monolayers mimicking an inflamed colon. Results showed that different
delivery strategies had various degrees of success for the local delivery
of orally administered proteins to inflamed colon. This study also il-
lustrates the application prospect of the colon-targeted systems de-
signed by the blending of different colon delivery strategies.

Different release models commonly applied for characterizing the release profile of the bioactive compounds.”

Mechanisms Equations Application Release Mechanisms

First order Q = 1-exp(kt) One release mechanism > Dissolution

Higuchi Q = kt'2 One release mechanism > Fick diffusion mechanism

Weibull Q= l-exp(-atb)B More than one release mechanism > b < 0.75, Fick diffusion mechanism; 0.75 < b < 1, Case II transport; b > 1, Complex

Ritger-Peppas Q = kt" More than one release mechanism

Peppas-Sahlin =~ Q = kyt'/?+kot® Quantify the contributions of erosion

mechanism and diffusion mechanism

release mechanism

> n < 0.45, Fick diffusion release; 0.45 < n < 0.89, anomalous (non-Fickian) transport;
n = 0.89, zero-order (case II) release; n > 0.89, super case II transport

> K;/ky < 1, erosion predominates; K;/k, = 1, diffusion equates erosion; K;/k, > 1,
diffusion predominates

Notes.

4 Q = M/M.., M, and M.. represent the cumulative amount of the bioactive compounds released at time t and the total amount of bioactive compounds loaded in

the vehicles, respectively; k, the release rate constant.
b a, scale parameter; b, shape parameter.
€ k; and k;, are the diffusion and erosion terms, respectively.
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4.2. In vivo evaluation methods

In vivo studies are usually conducted to evaluate site specific and the
relevant physiological efficacy of the delivered bioactive compounds
and to prove the workability of the resultant dosage forms. Different
animals such as rats, dogs, pigs, guinea pigs and rabbits have been used
to evaluate the delivery behavior since their anatomical and physiolo-
gical conditions as well as the microflora are similar to those of the
human GI tract. Different imaging techniques were employed to clearly
examine the delivery of the vehicles and the release behavior of
bioactive compounds. Additionally, an ex vivo study was also carried
out to verify the distribution of bioactive ingredients in different GI
tissues, which can in other parts to further illustrate the workability of
the designed vehicles.

4.2.1. In vivo imaging

The aim of the colon-targeted system is to deliver the bioactive
compounds into the absorption or function site. Vehicles based on
different mechanisms have been proposed and evaluated by just car-
rying out in vitro studies but these cannot lead to an accurate under-
standing of the delivery and disintegration behaviors of these systems.
In such cases, several imaging techniques have been applied to observe
the movement of the delivery vehicles.

4.2.1.1. X-rays. X-ray imaging is the most commonly used technique
for pinpointing visually various stages of the delivery vehicles
throughout the GI tract of humans as well as animals. Yassin et al.
(2010) designed a tablet-based colon targeted delivery system, and
extensively examined the resistivity of the system to the stomach and
small intestine environment and the selective disintegration of the
system inside the large bowel. They observed the complete
disintegration of the tablets after 10 h post administration (Fig. 4A),
and similar results were also reported by Omar’ group (Omar, Aldosari,
Refai, & Gohary, 2007). In another report, X-ray was also used the to
monitor the site specificity of the movement, location and the integrity
of the vehicles in the rabbit (Ilango et al., 2010). Nandy, Verma, Dey,
and Mazumder (2014) also substantiated the feasibility of X-ray to
monitor the changes of the colon-targeted microspheres. Results of the
X-ray images showed that the swelling layer eroded from the outer
surface and a size reduction was seen after reaching the site of colon
(6 h). Hence, X-ray is considered as a suitable technique for revealing
the location, the swelling, intactness or otherwise of the colonic
delivery vehicles in the GT tact.

4.2.1.2. y-Scinitigraphy. Gamma scintigraphy is another utilized
technique for observing the in vivo fate of the vehicles with respect to
the GI resistance and matrix integrity in the body. Asghar and Chandran
(2011) reported that the vehicles maintained intact when pass through
the GI tact and colon, and the imaging results showed that a mean
gastrin emptying of 1.87 =+ 0.55 h, small intestinal transit of
3.1 *= 1.3 h, and the colon residence time of 16.67 * 1.6 h,
respectively. The colon arrival time was around 5.0 + 1.52 h, which
substantiate a good correlation between in vitro release profiles and in
vivo transit times. Meanwhile, y-scintigraphy was also utilized by other
researchers to verify the workability of the designed colon targeted
delivery system as shown in Fig. 4B and C (Cole et al., 2002; Marvola
et al., 2008).

4.2.1.3. Fluorescent imaging. In addition to the above-mentioned
imaging techniques, Bie, Chen, Li, and Li (2016) labeled the
microcapsules with FITC and the in vivo colon targeted delivery of
vehicles was observed by fluorescence imaging with a fluorescence
image analyzer. As shown in Fig. 4D, the intensity of fluorescence in the
colon weakened as a function of transit time, indicating that the
microcapsules might be excreted from the body of nude mouse. A
similar study was carried out to monitor the delivery behaviors of the
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alginate-chitosan microspheres labeled with FITC. The results
demonstrated that the retention time in colon was more than 12 h
(Wang et al., 2016).

4.2.2. Ex vivo tests

Nutraceuticals, especially phytochemicals or probiotics, possess
various functions. One of the widely studied characteristics is their anti-
inflammatory activity, thus, much research has been conducted in the
design of colon-targeted delivery systems to protect these bioactive
compounds and improve their bioavailability. An ex vivo test was pro-
posed to observe the tissue sections and evaluate the efficacy of the
colon-targeted system. These tests are mostly performed to investigate
the mucoadhesive properties of the vehicles or for evaluating the im-
pact of the loaded bioactive compounds on colonitis. For instance,
Rameshand co-workers investigated the mucoadhesive properties of the
tablet made of pectin and PVP by determining their ex vivo mu-
coadhesive strength (Ramesh, Rubeena, Sai, Srikar, & Anil, 2015). As a
number of studies reported, many probiotic including Lactobacillus casei
01 have anti-inflammatory activities. Researchers have developed a
probiotic loaded chitosan-Ca-Alginate microparticles to deliver the
probiotic cells to the colon. From the results of the tissue test, it was
clear that synbiotic microparticles showed significantly higher effec-
tiveness in reduction of inflammation parameters, probably because of
the improved viability and bioavailability of the probiotic cells
(Ivanovska et al., 2017) (Fig. 5A). In addition, ex vivo studies were also
performed to determine the distribution of the bioactive compounds in
different tissue sections (gastric, small intestine and the colon epithelial
tissue) by fluorescence labeling (Fig. 5B) thus estimating the colonic
targeting capacity of the vehicles (Situ, Li, Liu, & Chen, 2015).

5. Current limitations and future trends

Recently, oral, colon-targeted delivery systems have been proven to
be effective in the field of pharmacy due to the special character of the
colon. Nevertheless, their application progress in the functional food
industry lags. Bioactive components, which have physiological benefits
or reduce risk of diseases, have currently attracted growing attention
among food researchers. The incorporation of these bioactive com-
pounds in a food system has been recommended as a simple way to
develop novel functional foods. Thus, the protection of such bioactive
food compounds and the improvement of their physiological benefits in
the GI tract have led to numerous attempts to develop food-grade
controlled release systems. A great number of studies have been carried
out to design and evaluate colon-targeted delivery systems for the ac-
tive ingredients based on various mechanisms and vehicles. However,
there still remain obstacles that prevent the application of colon-tar-
geted delivery systems in the food industry.

The mostly studied colon-targeted delivery systems mainly depend
on approaches like pH sensitive systems, time dependent systems, mi-
croflora-activated systems etc. Moreover, various vehicles developed
based on these mechanisms have been evaluated for their workability in
colon targeting. Based on the review of relevant research, we found that
some vehicles, especially those based on one single mechanism or
polymer, often cannot perform well in targeted release of the bioactive
compounds since it is difficult to precisely control the release of
bioactive component in the human digestive system. Generally, this
limitation can be addressed by combining multiple mechanisms (e.g.,
pH sensitive mechanism and microbial triggered mechanism) or mul-
tiple dosage forms (e.g., microparticle inside the tablet, nanoparticle
inside the nanofiber) for successful colon-targeted delivery.

A second challenge is associated with the selection of the appro-
priate polymers. For oral, colon-targeted systems, the polymers applied
need to be edible and have no adverse effect on health. In this case,
natural polymers, such as polysaccharides and proteins, may be the best
option due to their bio-friendly properties. Several studies developed
the colon-targeted delivery systems by utilizing the modified
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Fig. 4. Different in vivo imaging techniques used for monitoring the delivery behaviors of different colon targeted vehicles. A) X-ray imaging (A, coated tablet; B,
control image (stomach); C, 0.5 h (stomach); D, 2.5 h (proximal small intestine); E, 4 h (distal small intestine); F, 5 h (colon); G, 6 h (large intestine); H, 7 h (large
intestine); I, 8 h (large intestine); J, 9 h (large intestine); K, 10 h (large intestine)) (Yassin et al., 2010); B) and C): Gamma scintigraphic imaging (Cole et al., 2002;
Marvola et al., 2008); D) Fluorescent imaging (from left to right are the blank group and two Con A—RSA film-coated microparticle groups) (Bie et al., 2016).

polysaccharide to further improve the colonic targeting capacity of the
vehicles. Nevertheless, some solvents or synthetic polymer additives are
often needed in fabricating colon-targeted delivery systems. Thus,
toxicity studies of residual solvents and synthetic polymers as well as
their biological fate following digestion and absorption must be un-
dertaken. Other issues concern encapsulation efficiency, distribution,
and initial burst release of incorporated compounds in the vehicles also
needed to be considered. Apart from this, the bioactivity of the loaded
components both in the vehicles and release medium should be verified
since the bioactivity is the key factor for function. The impact of the
biopolymer-bioactive ingredients interactions in the targeted area on
the absorption also needs to be investigated.

Future researchers should consider multifunctional colon-targeted
delivery systems. Prebiotics are non-digested food compounds that can
improve the growth and/or activity of the probiotics. The co-en-
capsulation of probiotic and prebiotic can significantly improve the
survivability of the encapsulated cells when exposed to a harsh en-
vironment. In addition, the improved physiology activity of the loaded
active agents can also be achieved by co-encapsulation of probiotics.
Hence, the combination of prebiotics, probiotics and bioactive in-
gredients in one colon targeted delivery system maybe an attractive
way to preferably promote the health; meanwhile, the underlying me-
chanisms should be extensively explored.

A more reliable and comprehensive evaluation system is required to
estimate the colonic targeting capability of the designed vehicles. In
fact, most studies about the release profiles of colon-targeted delivery
systems are only conducted in the stimulated medium with different pH
values. However, several studies have confirmed that the addition of
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the enzymes in the stimulated medium can have a significant impact on
the release behavior of the loaded components. Therefore, the im-
proved release medium (e.g., medium contains fecal contents, medium
contains enzymes and microorganisms) should be applied to more ac-
curately evaluate the release properties of the bioactive compounds in
the future studies. In addition, efficient biological models, like cell
models, mimicking the uptake of the released bioactive compounds also
need to be adopted. Although in vivo studies are carried out in some
instances, these only obtained some physiological indexes of the tested
animals. Imaging techniques should be employed to clearly understand
the transit behavior and biodegradation characteristics of vehicles in
the GT tract. Further research is required to develop not only a better
correlation between the in vitro and in vivo models and accurate scaling
factors should take into account interspecies variations to accurately
predict human oral bioavailability.

Last but not least, it is foreseeable that the colon-targeted delivery
vehicles could be applied in the food industry and provides an alter-
native way to develop novel functional foods. Nevertheless, challenges
in fabricating functional foods incorporated with bioactive compounds
lie in stabilizing them in food processing and the GI tract. Several
studies successfully developed protective vehicles to encapsulate and
protect the loaded bioactive compounds, like phytochemicals and
probiotics, by employing some food grade materials and both of these
are powerful vehicle ingredients for stabilizing the bioactive com-
pounds over food processing, storage and digestive fluids, thus realizing
their colonic delivery. However, in regard of developing functional food
for colon-targeting, colon-targeted delivery vehicles should be in-
troduced into the food matrix, which may influence the structure of the
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Fig. 5. A) Effect of probiotic loaded microparticle on the colitic rat's colon segments. (a, non-colitic rats; b, colitic rats; c, colitic rats treated with non-encapsulated
probiotic/synbiotic; d, colitic rats treated with synbiotic microparticles) (Ivanovska et al., 2017); B) The fluorescence distribution after oral administration of
fluorescein isothiocyanate (FITC)-labeled microcapsules coated with RSA film (left) and coated with Con A-conjugated RSA film (right) in the colon epithelial tissue

of mouse at different time (Bie et al., 2016).

vehicle, compromising the bioactivity of the loaded active ingredients.
Hence, it is essential to investigate the impact of the food processing
(e.g., temperature, pressure) as well as the food matrix (e.g., type of
food consumed, quality of food, acidity or alkalinity of food) on the
structure of the vehicle, the release behavior as well as the bioactivity of
the delivered active compounds. Also, additional work should be per-
formed to examine the effect of the addition of colonic delivery vehicles
on the sensory characteristics of the products.

6. Conclusions

Nowadays, colon has been suggested as a particular important site
for constructing colon-targeted delivery systems due to its special
properties. Much progress has been made in colon-targeted delivery of
drugs in recent years. However, the colon-targeted delivery system is
still in its early stage in the field of food science. Currently, with the
increasing concerns on the health and nutrition of colon, colon-targeted
delivery of bioactive compounds has emerged as an impetus for re-
searchers to construct functional foods. Hence, it is necessary to review
various colon-targeted vehicles used in the current research, especially
those for the colon targeting of nutraceuticals, phytochemicals, and
probiotics. Herein, this paper systematically summarizes information
on the physiological properties of the GI tract, different colonic delivery
vehicles, evaluation techniques as well as the current challenges. The
issues encountered with the colon-targeted systems suggest future stu-
dies should be carried out to prepare vehicles that combine different
polymers, mechanisms and/or vehicles. Also, multifunctional colonic
delivery systems are an important and interesting alternative for deli-
vering the functional bioactive compounds to the colon. Mechanistic
insights into the relations between the carrier materials and bioactive
compounds should be extensively investigated and should provide the
theoretical basis for its industrialized application as well as promote the
development of the functional industry.
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